Supporting Information

Organ-Specific and Size-Dependent Ag Nanoparticle

Toxicity in Gills and Intestines of Adult Zebrafish

Olivia J. Osborne^{†§}, Sijie Lin^{†§}, Chong Hyun Chang[†], Zhaoxia Ji[†], Xuechen Yu[†], Xiang Wang[†], Shuo Lin[‡], Tian Xia^{#†} and André E. Nel^{#†*}

[†]Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA;

[#]Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA;

[#]Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA [§]Contributed equally

**Corresponding Author:*

André E. Nel, M.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 825-6620, Fax: (310) 206-8107 E-mail: anel@mednet.ucla.edu
 Table S1.
 Current market products containing AgNPs.

Category	Product		
	Hair Straighter		
Appliances	Iron		
	Bidet		
Cosmetics	Beauty Soap		
	Toothpaste		
Food & Beverages	Food box containers		
	Kitchen utensils		
	Health Supplement		
Goods for children	Baby carriage		
	Plush Toys		
Health & Fitness	Wound Dressing		
	Sports Socks		
Home & Garden	Paint		
Home & Gui den	Humidifier		

Source: PEN website accessed on March 2015

 Table S2. AgNPs hydrodynamic diameter and zeta-potential in simulated fluid at 0 hr and 4 days.

Simulated intestinal fluid	0 hr		4 days			
NPs	d _H (nm)	PdI	ζ -potential (mV)	$d_{\rm H}$ (nm)	PdI	ζ-potential (mV)
AgC20	1112.5 ±40.5	0.297	-29.65±1.77	759.8±20.4	0.297	-27.72±2.32
AgC110	391.1±17.3	0.292	-40.07±4.94	326.7±10.2	0.328	-38.64±2.80

Figure S1. Representative TEM images of AgNPs characterization in simulated intestine fluid (monobasic potassium phosphate, sodium hydroxide and pancreatin mix) at t=0 or after 4 days, demonstrating the shrinking and morphological changes in the AgC20 particles over time (Panels A and C). In contrast the AgC110 particles remained quite uniform (Panels A and C).

Figure S2. Idealize diagrams of the zebrafish gill to illustrate the key features of a normal gill, as well as explaining gill pathology after exposure to Ag nanoparticles or ionic Ag. (**A**) Diagram depicting the key features of a normal gill: (1) primary filament; (2) secondary filament; (3) erythrocyte; (4) basal cells; (5) mucous cells. (**B**) Diagram illustrating AgC20 adherence to the secondary filaments, causing them to fuse. (**C**) Diagram illustrating adherence of AgC110 particles adherence to the secondary filaments, causing them to fuse. (**D**) Diagram illustrating free flow of ionic AgNO₃ through the primary and secondary filaments without adherence.

Figure S3. Idealize diagrams of the zebrafish intestine to explain the key features of a normal intestine, as well as the pathology that results to particulate and ionic Ag exposure. (**A**) Diagram illustrating the key features of a normal intestine: (1) goblet cells; (2) enterocytes; (3) microvilli; (4) basolateral membrane. (**B**) Diagram illustrating adherence of AgC20 particles to the intestinal epithelium. (**C**) Diagram illustrating adherence of AgC110 particles to the surface of the intestinal epithelium in smaller quantities. (**D**) Intestinal diagram to explain dousing of the intestine by AgNO₃.

Figure S4. Schematic to explain the structure and function of the Na/K ATPase pump. The diagram also depicts Ag^+ competing for Na⁺ in binding to the pump components.

Figure S5. A dosimetry graph showing percentage survival in adult zebrafish over the course of 4 days post exposure of AgC20, AgC110 and AgNO₃ at 1 ppm, 2.5 ppm and 5 ppm.