Facile one-pot preparation of calcite mesoporous carrier for sustained and targeted drug release for cancer cells

Article in Chemical Communications · September 2012

DOI: 10.1039/c2cc35103j · Source: PubMed

9 authors, including:

Yuming Guo
Henan Normal University
50 PUBLICATIONS 604 CITATIONS

Kui Wang
Henan Normal University
41 PUBLICATIONS 486 CITATIONS

Kai Jiang
Henan Normal University
118 PUBLICATIONS 1,394 CITATIONS
Facile one-pot preparation of calcite mesoporous carrier for sustained and targeted drug release for cancer cells

Yuming Guo,* Jie Zhang, Lili Jiang, Xiaoman Shi, Lin Yang,* Qilong Fang, Hui Fang, Kui Wang and Kai Jiang

Received 17th July 2012, Accepted 5th September 2012
DOI: 10.1039/c2cc35103j

Herein, mesoporous calcite/chondroitin sulfate hybrid microrods are prepared through a one-pot method. Biological assays indicate that the microrods might be used as good active targeted drug delivery carriers to treat tumor tissues with high specificity and low toxic side effects.

Currently, most chemotherapeutic drugs suffer from a lack of tumor selectivity and serious side effects. Through passive or active targeting, drug delivery systems (DDS) exhibit improved efficacy and reduced side effects.1,2 Active targeted DDS can recognize tumor sites through the modification of targeting agents.3,4 However, hitherto, most active targeted DDS are polymer-based carriers and their applications are seriously limited by complicated preparation and safety concerns.5,6 Therefore, the facile preparation of biocompatible active targeted DDS has attracted considerable attention. Considering the advantages over polymers, including facile preparation and non-involvement of toxic reagents, inorganic materials might be good candidates for DDS. Several studies have reported the applications of porous SiO2 as a DDS.7,8 However, most of these SiO2-based DDS are passive targeted systems and just own the lower targeting effect than the active systems.9 Compared with SiO2, CaCO3 exhibits ideal biocompatibility and biodegradability and might be used as an ideal DDS candidate. However, so far, reports about the application of CaCO3 as a DDS are rare,10,11 especially as an active targeted DDS.

Herein, using chondroitin sulfate (CS) as the targeting agent and the morphology-directing matrix simultaneously, CS/calcite hybrid mesoporous microrods (CS–CaMRs) were successfully prepared through a facile one-pot strategy. Biological assays revealed that doxorubicin hydrochloride (DOX·HCl) could be efficiently loaded into the carrier, delivered to the target cancer cells and released in a sustained fashion to exert its anticancer effect. Furthermore, the targeted delivery and sustained release significantly enhanced the anticancer effect and decreased the toxic side effects of DOX·HCl. This suggests that the as-prepared CS–CaMRs might be used as a potential targeted DDS to treat cancer with high specificity.

A possible mechanism for the preparation of CS–CaMRs and the targeted delivery and sustained release of DOX·HCl is shown in Scheme 1. Firstly, after mixing of Ca2+ and CS, the Ca2+ accumulates around the CS through the interactions between Ca2+ and CS. Then, calcite/CS hybrid nanoparticles are formed after the addition of Na2CO3 and self-assemble into mesoporous microrods. Secondly, DOX·HCl is loaded into the microrods. Thirdly, through the specific ligand–receptor interactions between CS and CD44 receptors, the CS–CaMRs/DOX·HCl are specifically delivered and accumulate around the cancer cell. Then the CS–CaMRs/DOX·HCl could be internalized into the cancer cells through receptor-mediated endocytosis and some of the CS–CaMRs/DOX·HCl could be decomposed under the weakly acidic conditions inside the cancer cells. Finally, the internalized CS–CaMRs/DOX·HCl are decomposed and a...
large amount of DOX-HCl molecules are released, resulting in cell death.

The morphology of the CS-CaMRs was observed by SEM and TEM. From these results, the CS-CaMRs exhibit well-dispersed rod-like structures (Fig. 1a) and a narrow size distribution with an average diameter of 397.6 nm and length of 1.28 μm (Fig. S1a–b, ESI†). From field-emission SEM (Fig. 1a inset) and TEM images (Fig. 1b), the CS-CaMRs are composed of nanoparticles with an average size of 5.99 nm (Fig. S1c, ESI†). Moreover, the obvious space between the nanoparticles (Fig. 1a inset) indicates the presence of pores. Through multipoint Brunauer–Emmett–Teller (BET) analysis, the specific surface area (SSA) is 83.9 m² g⁻¹ (Fig. S2, ESI†) and the average size of the pores is 25 nm, indicating the mesoporous feature of the CS-CaMRs. In addition, from Fig. S3 and Fig. S4 (ESI†), the products from 0.1 wt%, 0.2%, 0.3 wt%, and 0.5 wt% CS are not microrods, but irregular aggregates. Furthermore, the control product obtained in the absence of CS is a cubic-like aggregate. This reveals the importance of CS for the formation of microrods.

By XRD analysis, the CS-CaMRs exhibit identical diffraction peaks to calcite (PDF 83-0578) (Fig. 1c). In the FT-IR measurements, compared with the spectrum of CS (Fig. 1d), in addition to the characteristic bands of calcite at 713 and 874 cm⁻¹, the absorption bands of –C–O, –OH, –(SO₃)⁻, –C O O⁻, and –N–H of the CS are also detected in the CS-CaMRs, indicating the presence of CS. Furthermore, the positions and intensities of the absorption bands of these groups change to some extent, revealing the interactions between the calcite and these groups. From the TG-DSC analysis (Fig. 1e), the CS content in the CS-CaMRs, indicating the presence of CS. Furthermore, the positions and intensities of the absorption bands of these groups change to some extent, revealing the interactions between the calcite and these groups. From the TG-DSC analysis (Fig. 1e), the CS content in the CS-CaMRs is 5.26%.

The formation process of the CS-CaMRs was evaluated through time-dependent observations. From Fig. S5 (ESI†), the nanoparticles are formed when Na₂CO₃ is added and assemble into twin spheres after 10 min. After 3 h, a large amount of pseudorods are formed. After 24 h, the mesoporous microrods are formed. From Fig. S5 (ESI†), the main exposed faces of the products after 10 min and 24 h are (006) and (110) respectively, indicating the transformation of the habit faces during microrod formation. Based on the optimized models of the (110) and (006) faces (Fig. S6, ESI†), the (110) faces are neutral-charged faces and possess low surface energy. However, the (006) faces consist of Ca²⁺ and have higher surface energy. It should be the surface energy difference between (110) and (006) that drives the transformation of the habit faces and results in the formation of the microrods.

Using DOX-HCl as a model drug, the potential application of the CS-CaMRs as a targeted DDS was studied. The red autofluorescence of DOX-HCl was used to monitor the loading effect. From Fig. S7 (ESI†), the red fluorescence of CS-CaMRs/DOX-HCl indicates the efficient loading of DOX-HCl. UV-Vis spectroscopic analysis indicated that the loading content and entrapment of DOX HCl were 5.782% and 57.82%, respectively.

Tumor tissues have a lower local pH (5–6) than normal tissues (7.4), which is an intrinsic feature of tumors and can be exploited as a drug release trigger for pH-sensitive carriers. Therefore, the release experiments were performed at different pH values. Fig. 2a shows that the release efficiency under acidic conditions is much higher than under neutral conditions, which can be attributed to the pH sensitivity of the microrods. This suggests that the CS-CaMRs might be used as a good pH-sensitive DDS to release drugs into tumor tissues. Furthermore, after initial burst release within the first 24 h, DOX-HCl showed a sustained release profile over 20 days. The sustained release might yield the sustained level of DOX-HCl required to exert the anticancer effect for a much longer duration than the pure drug, thereby effectively avoiding the need for frequent administration.

It is well known that CD44 is a membrane glycoprotein that is overexpressed by cancer cells, such as HeLa cells. From previous studies, CS molecules can function as ligands to specifically combine with CD44. This specific interaction endows the CS-CaMRs with the targeted delivery feature for HeLa cells. From Fig. 2b–c, the nanoparticles are formed when Na₂CO₃ is added and assemble into twin spheres after 10 min. After 3 h, a large amount of pseudorods are formed. After 24 h, the mesoporous microrods are formed. From Fig. S5 (ESI†), the main exposed faces of the products after 10 min and 24 h are (006) and (110) respectively, indicating the transformation of the habit faces during microrod formation. Based on the optimized models of the (110) and (006) faces (Fig. S6, ESI†), the (110) faces are neutral-charged faces and possess low surface energy. However, the (006) faces consist of Ca²⁺ and have higher surface energy. It should be the surface energy difference between (110) and (006) that drives the transformation of the habit faces and results in the formation of the microrods.

Using DOX-HCl as a model drug, the potential application of the CS-CaMRs as a targeted DDS was studied. The red autofluorescence of DOX-HCl was used to monitor the loading effect. From Fig. S7 (ESI†), the red fluorescence of CS-CaMRs/DOX-HCl indicates the efficient loading of DOX-HCl. UV-Vis spectroscopic analysis indicated that the loading content and entrapment of DOX HCl were 5.782% and 57.82%, respectively.

Tumor tissues have a lower local pH (5–6) than normal tissues (7.4), which is an intrinsic feature of tumors and can be exploited as a drug release trigger for pH-sensitive carriers. Therefore, the release experiments were performed at different pH values. Fig. 2a shows that the release efficiency under acidic conditions is much higher than under neutral conditions, which can be attributed to the pH sensitivity of the microrods. This suggests that the CS-CaMRs might be used as a good pH-sensitive DDS to release drugs into tumor tissues. Furthermore, after initial burst release within the first 24 h, DOX-HCl showed a sustained release profile over 20 days. The sustained release might yield the sustained level of DOX-HCl required to exert the anticancer effect for a much longer duration than the pure drug, thereby effectively avoiding the need for frequent administration.

It is well known that CD44 is a membrane glycoprotein that is overexpressed by cancer cells, such as HeLa cells. From previous studies, CS molecules can function as ligands to specifically combine with CD44. This specific interaction endows the CS-CaMRs with the targeted delivery feature for HeLa cells. From Fig. 2b–c,
attributed to the gradual dissolution and decomposition of the calcite in the weakly acidic environment of the HeLa cells. In addition, after treatment with CS–CaMRs/DOX-HCl, the HeLa cells were observed by TEM. From Fig. 3c, the CS–CaMRs and the decomposed calcite nanoparticles can be found inside the cells, indicating the internalization of the CS–CaMRs and the decomposed nanoparticles into the HeLa cells by receptor-mediated endocytosis. Furthermore, the whole HeLa cell emits strong red fluorescence (Fig. 3d). This confirms the internalization of CS–CaMRs/DOX-HCl and the release of DOX-HCl, which finally results in cell death.

In summary, CS molecules can not only be used as the morphology-directing agent to prepare CS-CaMRs, but can also be used as the targeting agent to specifically interact with CD44. The CS–CaMRs can be efficiently loaded and used for targeted delivery and sustained release of anticancer drugs to treat cancer cells. This suggests that CS–CaMRs might be used as active targeted DDS to treat tumors with high specificity and low toxic side effects.

This work was financially supported by the National Science Foundation of China (21171051, 21271066), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1061), the Innovation Fund for Outstanding Scholar of Henan Province (114200510004), the Henan Key Program Proposed for Basic and Frontier Research (112102210005, 112300410095) and the Key Young Teachers Project of Henan Province (2012GGJS-065) and Henan Normal University.

Notes and references