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Abstract

Aquaculture in China has undergone significant evolution in recent decades, transi-

tioning from traditional practices to a vital food production industry. Alongside the

rapid growth of aquaculture in China, aquafeed production continues to expand

swiftly. This review attempts to establish an overview of the history and achieve-

ments in aquaculture nutrition research and feed industry in China. The development

of scientific concept and methodology, especially the advanced molecular biology

technology guarantees the shift from traditional nutrition to molecular nutrition, and

subsequently to precision nutrition in aquaculture nutrition research. This evolution

has facilitated the formulation of effective strategies to enhance the growth, health

and product quality of aquatic animals. The advancements of aquaculture nutrition

research and feed industry have also been propelled by innovative research concepts

rooted in principles such as the health and safety of aquatic animals, the quality of

aquatic products, resource conservation and environmental friendliness, and the

advancements in key processing technologies within the aquafeed industry. The

future perspectives of the aquaculture nutrition research and feed industry in China

are also proposed. The present work aims to provide a reference for promoting the

development of aquaculture nutrition research and feed industry in China.
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1 | INTRODUCTION

Over the last few decades, aquaculture in China has evolved from a

traditional practice to a crucial food production sector, accounting for

more than half of global food fish consumption.1 According to the sta-

tistics of the Food and Agriculture Organization, people is now con-

suming more aquatic food than ever before, with about 20.2 kg of

aquatic products per person in 2020, which is more than double the

amount consumed 50 years ago.2 In 2020, global fisheries and aqua-

culture production reached a record high of 178 million tons.2

Although total production of global fisheries and aquaculture has

increased rapidly over the past two decades, the production from wild

capture has stabilized,2 indicating the booming development of

farmed fisheries. The global aquaculture production has seen a

remarkable increase from 2.6 million tons in 1970 to 87.5 million tons

in 2020.2 Therefore, the development of efficient and sustainable

aquaculture can provide a food supply for humans and contribute to

the global ‘blue transition’ in aquaculture.

China plays a significant role in global aquaculture, contributing

approximately 60% of the world's total aquaculture production.2
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Aquaculture production in China has risen from 2.33 million tons in

1978 to 53.94 million tons in 2021, a 20-fold production increase

over the past few decades (Data from China Fisheries Statistical

Yearbook 1979–2022). This rapid expansion of aquaculture has out-

paced the availability of traditional feed sources, such as natural baits

and low-value ingredients, necessitating the development of the

aquafeed industry to support sustainable growth of aquaculture.

Therefore, the goal of this paper is to provide a broad overview of the

current knowledge and prospects for the aquaculture nutrition

research and feed industry in China to inform the future development

of the aquaculture nutrition research and feed industry. Notably,

because of the great diversity of aquaculture species in China, it

would be futile to attempt to review the current knowledge in the

aquaculture nutrition research and feed industry of all these species.

What is endeavoured here is to illustrate with suitable examples,

where appropriate, and to illustrate the breakthrough in research

methodology, research concept and key technologies, and prospects

of aquaculture nutrition research and feed industry in China.

2 | HISTORY OF THE AQUAFEED
INDUSTRY IN CHINA

Aquaculture has been practiced for millennia. Early on, people would

keep fish collected from rivers, lakes and the seas in captivity and use

them as food reserves. Oracle bone inscriptions discovered from the

Shang Dynasty in Yin Ruins of Henan Province (1395–1123 BCE)

indicated that fish farming was being practiced during this period. Clay

depictions of carp ponds, as well as writings by Fan Li in China around

500 BCE (Chinese Aquaculture Society3), further document aquacul-

ture activities. Until the 1950s, aquaculture in China relied on captur-

ing wild fingerlings for stocking ponds, and depending on natural food

resources within the ponds to provide nutrients for the fish. However,

overfishing from increased population growth has greatly reduced the

production of wild fish. For small-scale farmer (the single most popu-

lous group in the world), fewer resources are available to them, and

thus many terrestrial and aquatic macrophytes are used in aquacul-

ture, and this mode of culture is also widely used in other Asian and

developing countries.4 Moreover, there was a lack of research on

aquaculture nutrition in China, so agricultural byproducts were

used as feeds based on fish nutrition data published abroad.5

However, due to the limited understanding of nutrient requirements,

the feed conversion ratio was high. Since the 1980s, universities such

as Sun Yat-sen University, Ocean University of China, and Shanghai

Ocean University started to offer fish nutrition courses. Pioneers of

aquaculture nutrition in China, such as Professors Ding Lin, Aijie Li,

Daozun Wang, and so forth, played a prominent role in recruiting and

supervising postgraduate students in this field. At the same time, many

research institutes and feed enterprises have joined efforts to conduct

systematic research on the nutritional requirements of major aquacul-

ture species in China and the bioavailability of feed ingredients. These

collective efforts led to significant improvements in the quality of aqua-

feeds developed in China. As a result, aquafeed enterprises emerged,

and the aquafeed industry in China experienced substantial develop-

ment. Overall, the history of aquaculture nutrition in China has seen a

progression from a reliance on natural productivity to the systematic

study of nutritional requirements and the development of improved

aquafeeds. This has played a crucial role in supporting the growth and

development of the aquaculture in China.

After 20th century, the demand for aquafeeds increased rapidly.

However, Chinese aquaculture is highly diverse in terms of culture

species, feeding habits, ecological distribution, and culture mode. Due

to the late inception of aquaculture nutrition research, limited

research funding, and a shortage of nutrition research experts, it is dif-

ficult to quantify the nutritional requirements of such a diverse range

of species, even within an extended timeframe. To address these chal-

lenges, Chinese governmental departments and researchers in the

field of aquatic nutrition collaborated to propose the selection of rep-

resentative species, standardize research methods, and conduct sys-

tematic studies. Accordingly, a comprehensive database of nutrient

requirements for representative aquatic species (Figure 1) in China

was developed. The insights garnered from researching these repre-

sentative species were subsequently extrapolated to other farmed

species with similar taxonomic status, geographic distribution, feeding

habits, and farming modes. Subsequently, a database of nutritional

parameters for major aquatic animals in China was gradually emerged,

F IGURE 1 The representative aquatic species in China after 20th
century.
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which plays a crucial role in promoting the development of feed

industry.

In the 21th century, aquaculture nutrition research has been facil-

itated by increased research funding, a growing number of aquacul-

ture nutrition professionals, and international cooperation. Especially

in the past decade, there has been a significant increase in funding

from programs such as National Key Research and Development Pro-

gram of China, the National Natural Science Foundation of China, and

feed enterprise funding, which provided strong support for discipline

construction and the development of the aquafeed industry. Scientists

and feed industry also hope to improve the health of farmed animals

by offering high-quality feed products, ensuring food safety, and safe-

guarding the farming environment, all with the overarching goal of

fostering sustainable development of aquaculture. Overall, these

advancements in aquaculture nutrition research have led to the

improvement of aquafeed quality, the promotion of healthy and sus-

tainable aquaculture practices, and the further development of the

aquaculture in China.

3 | PRODUCTION OF AQUACULTURE AND
AQUAFEED IN CHINA

Over the past four decades, aquaculture production in China has

increased rapidly along with the production of aquafeeds. The aqua-

feed industry in China began in the 1980s and has since witnessed

significant expansion. In 1991, the production of aquafeed in China

was only 7.5 � 105 tons but it reached 2.3 � 107 tons in 2021, an

increase of about 30 times in 30 years (Figure 2). Nonetheless, a nota-

ble disparity persists between the total aquafeed production and the

total aquaculture yield in China. While there are farming models that

do not rely heavily on formulated feeds, such as rice-fish co-culture

and filter-feeding fish farming, there is immense potential for further

development of aquafeeds in China. The spatial profiles of aquacul-

ture and aquafeed production in China varies significantly by region

(Figure 3). For example, the volume of aquaculture and aquafeed in

the east and south regions was much higher than in the north and

west areas. Guangdong, Shandong, Fujian, Hubei, and Jiangsu are the

top five provinces for aquaculture production with annual outputs of

7.57, 6.42, 6.32, 4.81 and 4.33 million tons, respectively. Collectively,

these provinces represent over half of the total production nation-

wide.6 The pattern of the change in the regional distribution of aqua-

feed production is similar to that of aquaculture. Guangdong, Jiangsu,

Hubei, Fujian, and Hunan are the top five provinces of aquafeed pro-

duction with annual outputs of 7.49, 3.61, 2.63, 1.67 and 1.34 million

tons, respectively. These provinces contribute over 70% of the total

aquafeed production nationwide (data source: China Feed Industry

Association, http://www.chinafeed.org.cn/). The high aquafeed pro-

duction in these regions can be attributed to the relatively high aqua-

culture production levels, creating a greater demand for aquafeed.

Additionally, these regions have a longer history in the aquafeed

industry and are home to several large feed enterprises, such as

Guangdong HAID Group Co., Ltd., Guangdong Yuehai Feeds Group

Co., Ltd., and Guangdong Evergreen Feed Industry Co., Ltd.

4 | CURRENT ACHIEVEMENTS OF THE
AQUATIC ANIMAL NUTRITION AND FEED
INDUSTRY IN CHINA

4.1 | Scientific breakthroughs in research
methodology

With the development of aquaculture as a major industry, methods of

research in aquaculture nutrition have undergone huge changes,

evolving from the classical gradient nutrient approach to physiological

and biochemical analyses and molecular biology methods. This shift

has allowed researchers to gain a deeper understanding of the specific

mechanisms of nutritional metabolism in aquatic animals. In general,

traditional nutritional research methods are extensive, but few studies

related to the specific mechanism of nutritional metabolism have been

conducted. In the traditional conception of aquaculture nutrition

F IGURE 2 The aquafeed and aquaculture production in China 1978–2021. Data Source: Fishery Bureau of Ministry of Agriculture PRC
(1979–2022) and China Feed Industry Association (http://www.chinafeed.org.cn/).

BU ET AL. 3

 17535131, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12865 by H

enan N
orm

al U
niversity, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.chinafeed.org.cn/
http://www.chinafeed.org.cn/


research, an increase in growth is regarded as a direct indicator of

good nutritional status in aquatic animals. In the past, nutritionists

usually determined the nutrient requirements of aquatic animals

through feeding trials, using mathematical models to analyse

indicators such as growth and nutrient composition in the whole-body

and tissues of aquatic animals.7–9 However, with the increasing

demands for the health and quality of fish products in intensive aqua-

culture, there is a need to explore nutrient metabolism and related

F IGURE 3 Regional distribution of aquaculture production (a) and aquafeed production (b) (except for Hong Kong, Taiwan and Macau) in
2021. (a) The aquaculture production volume for each province; (b) the aquafeed production volume for each province. Data source: Fishery
Bureau of Ministry of Agriculture PRC (2022)6 and China Feed Industry Association (http://www.chinafeed.org.cn/).
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signalling pathways in order to achieve precise nutrient regulation and

meet the demand for high-quality aquatic products. For example,

researchers have identified multiple molecular targets involved in

nutrient deposition and health regulation in fish, such as mechanistic

target of rapamycin (mTOR),10 adenosine 50-monophosphate (AMP)-

activated protein kinase (AMPK),11 farnesoid X receptor (FXR),12 and

NF-E2-related factor 2 (Nrf2),13 nuclear factor Kappa B (NFκB)14

and transcription factor EB (TFEB).15 Over the past decades, aquacul-

ture nutrition research has moved from traditional nutrition to molec-

ular nutrition and then to precision nutrition.

4.2 | Innovation in the concept of aquaculture
nutrition research

With the improvement of the living standards of humans, the quality

and safety of aquatic products have attracted more attention. Simulta-

neously, aquaculture nutrition research has become more focused on

the concept of resource conservation and environmentally friendly

aspects.

4.2.1 | Animal health and safety of aquatic products

The use of antibiotics has raised concerns about antibiotic resistance

and the presence of drug residues in animal tissues, posing risks to

human health.16,17 In aquaculture, approximately half of the produc-

tion loss is caused by disease.18 Disease outbreaks in fish, which result

in significant economic losses, are often linked to environmental pollu-

tion and nutritional imbalances that weaken the immunity of aquatic

animals.19,20 By exploring clear mechanisms, nutritional and non-

nutritional regulation strategies have been developed to enhance the

immunity of farmed aquatic animals, improve their health, increase

survival rates, reduce drug usage, and ensure the quality and safety of

aquatic products. For example, toll-like receptors 22 (TLR22) have

been found to recognize dsRNA in the cell membrane, activating

inflammatory responses in macrophages of large yellow croaker (Lari-

michthys crocea) through the nuclear factor kappa B and type I inter-

feron pathways. Furthermore, docosahexaenoic acid (DHA) has been

shown to attenuate TLR22-triggered inflammation by reducing the

contents of membrane sphingomyelins and saturated fatty acid-con-

taining-phosphatidylcholines, which are necessary for lipid raft organi-

zation.21 DHA could alleviate palmitic acid-induced inflammation in

macrophages via the TLR22-MAPK-PPARγ/Nrf2 pathway in

L. crocea.22 Vitamin D could attenuate Aeromonas hydrophila induced

inflammation via vitamin D receptor b/macrophage stimulating 1 by

modulating NFκB and signal transducer and activator of transcription

3 signalling pathway in grass carp (Ctenopharyngodon idella).23 Nutri-

tion and immunology have become hot topics in aquaculture

nutrition.24 In recent years, Chinese researchers have focused on the

synergistic effects of nutrition and immunity, the relationship between

malnutrition and disease, the relationship between nutrients (energy,

protein, amino acids, fatty acids, vitamins and minerals) and the

cellular differentiation and cellular metabolites of the immune system,

as well as the nutritional requirements for maintaining optimal

immune function in aquatic animals under various stressful condi-

tions.25 Immuno-enhancing agents used in aquafeeds in China include

vitamins, trace elements, oligosaccharides, nucleotides, and Chinese

herbs to enhance the immunity of aquatic animals.26–30 However,

there is still a need for more in-depth research on nutrition and immu-

nity in aquaculture in China, as well as a better understanding of the

immunomodulatory mechanisms of functional additives.

4.2.2 | Quality of aquatic products

The quality of fish flesh is a complex set of characteristics that can be

affected by intrinsic and extrinsic factors.31 Numerous studies have

demonstrated that flesh quality is closely related to nutrition, and that

feeding improper nutrients or ingredients can lead to a significant

reduction in the flesh quality and flavour of farmed fish.32–34 There-

fore, it is important to study the mechanisms by which nutrition con-

trols the quality of aquatic products, and on this basis develop

additives that can improve the quality of aquatic products.

Many recent studies have shown that there are differences in the

ability of marine and freshwater fish to synthesize highly unsaturated

fatty acids. The omega-3 fatty acids such as eicosapentaenoic acid

(EPA) and DHA are known for their beneficial effects on human health

and disease prevention.35 The elongase 5 of rainbow trout has a

higher degree of chromatin opening and promoter activity than that

of large yellow croaker, which may explain the freshwater fish's higher

capacity for synthesizing EPA and DHA.36 Moreover, previous studies

have also demonstrated that the Nrf2 and mTOR pathways may be

involved in the regulation of the nutritional quality and flavour of

muscle in fish.32,37 These mechanistic insights serve as valuable refer-

ences for the developing functional additives and the utilizing nutri-

ents to enhance the quality of aquatic products.

Generally, the quality of aquatic animals is markedly affected by

different nutrients or ingredients in feeds. For instance, replacing fish-

meal with alternative protein sources, such as animal protein sources,

plant or fermented plant protein sources, insect protein sources, or

single-cell protein sources, can have varying degrees of negative

impact on the flesh quality of different farmed fish.38–45 Previous

studies have demonstrated that high-fat diets (HFDs) can reduce the

flesh quality of Nile tilapia (Oreochromis niloticus).46,47 In contrast,

Zhang et al.46 reported that increasing lipid catabolism by supple-

menting with L-carnitine can rectify the increased pH and hardness in

fillets caused by HFD in O. niloticus. Moreover, substituting an appro-

priate proportion of vegetable oil for fish oil in feed can improve the

flesh quality properties (liquid holding capacity, TBARS value, and

overall flavour score) of L. crocea.48 Suitable amounts of lipid sources

or essential fatty acids, especially n-3 high unsaturated fatty acids, in

the diets of aquatic animals can improve the flesh quality and fla-

vour.49,50 Excessive amounts of carbohydrates, another important

macronutrient, in the diet can also significantly reduce the fibre diam-

eter, pH, liquid holding capacity, and hardness of muscle tissue of

BU ET AL. 5
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olive flounder Paralichthys olivaceus.51 Additionally, micronutrients

such as vitamins A, C, and E, folic acid, riboflavin, thiamin, minerals, as

well as some functional additives including L-carnitine, tea polyphe-

nols, oligosaccharides, and Chinese herbs, have been found to play

important roles in regulating flesh quality and/or flavour in aquatic

animals.46,52–63

4.2.3 | Resource conservation

Aquaculture has emerged as the largest consumer of global fishmeal,

accounting for 68% of annual production.64 Fishmeal is widely used

as an animal protein source in the aquafeed due to its appropriate pal-

atability and high nutritional value.65 However, the scarcity of fish-

meal as a premium protein source has led to rising prices,

necessitating the search for alternative protein sources. In recent

years, studies worldwide have focused on finding potential substitutes

for fishmeal.65–68 We searched the web of science database (https://

www.webofscience.com/) using the keywords ‘fishmeal substitution’
and ‘aquaculture’. We found 820 papers published over the last

decade, 21.95% of which were published by Chinese research institu-

tions (Figure 4a). It is clear that China has made a significant contribu-

tion in finding potential alternatives to fishmeal. Investigations on

substituting plant protein ingredients for fish meal have attracted the

most attention (Figure 4b). Various plant-based ingredients, such as

soybean meal and cottonseed meal, have been used as fishmeal alter-

natives in aquafeed due to low market price and sustainable produc-

tion.69,70 However, the use of plant-based ingredients also has many

limitations, such as the existence of anti-nutritional factors, strong

reliance on arable land, fertilizer, and water, and competition for food

with humans. Consequently, China has focused on developing cost-

effective and sustainable non-traditional sources.71–73

Microbial fermentation and enzymatic digestion have been used

to improve poor palatability, low digestibility, imbalanced amino acid

composition, and high anti-nutritional content in non-traditional pro-

tein sources. Fermentation with specific microorganisms can help

preserve nutrients, reduce feed costs, and minimize environmental

pollution associated with plant protein sources.74 Animal proces-

sing by-products can also be hydrolysed using various proteolytic

enzymes to produce protein hydrolysate rich in essential nutrients

and bioactive peptides.75 Tables 1 and 2 summarize the fermented

plant protein sources and enzymatic protein ingredients used for

aquafeed in China. Nevertheless, there are challenges to be

addressed, such as implementing technological advancements in

large-scale feed production and investigating the physiological and

health effects of fermented and enzymatic protein feeds on aquatic

animals.

Apart from plant-based alternatives, aquaculture by-products,

insect meals, macroalgae, and single-cell proteins have been investi-

gated as fishmeal substitutes in aquafeed.64,72,76–79 In China, there

has been a notable emphasis on single-cell proteins, particularly one-

carbon molecular gas protein (C1GP). C1GP is derived from bacterial

fermentation using environmentally sustainable substrates sourced

from waste streams or industrial C1 molecular gases, such as methane,

methanol, CO, and CO2.
80,81 C1GP is a promising protein source due

to its high-level protein, ideal amino acid profile, and low carbon emis-

sions. The most commonly used types of C1GP in China currently

include methanotroph bacteria meal (Methylococcus capsulatus) and

Clostridium autoethanogenum meal. Wang et al.72 reviewed microor-

ganisms, protein production technology, nutrition, products utilizing

C1 gases, and their aquafeed applications. Dietary methanotroph

(M. capsulatus, Bath) bacteria meal (FeedKind®) improved growth,

digestibility, and antioxidant capacity of juvenile Jian carp (Cyprinus

carpio var. Jian).82 M. capsulatus meal replaced up to 30% fish meal

without significantly negative effects on growth performance and

health of juvenile turbot.83 Dietary C. autoethanogenum protein regu-

lated energy homeostasis in juvenile farmed tilapia (GIFT: O. niloticus)

via adenosine 50-monophosphate (AMP)-activated protein kinase

pathway.84 C. autoethanogenum protein replaced up to 42.80% of die-

tary fish meal without adverse effects on growth and flesh quality of

largemouth bass (Micropterus salmoides).39 Synthetic biotech-

produced single-cell protein sources offer advantages, not competing

F IGURE 4 The number of papers on fish meal substitution published by scientific institutions in China and other countries outside China.
(a) The total number of published papers; (b) The number of published papers on fish meal substitution with different protein sources. Mixed
protein including plant protein sources and animal protein sources; Others including single-cell proteins such as yeast, Chlorella, and one-carbon
molecular gas protein.
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for human food, needing minimal resources, and contributing to the

concept of sustainable development by repurposing waste.

There is growing evidence that the use of insect protein ingredi-

ents in aquafeeds is a sustainable alternative in worldwide including

China. Insects such as black soldier fly (Hermetia illucens), yellow meal-

worm (Tenebrio molitor), and common housefly (Musca domestica) have

high productivity and fast life cycles, yielding high quality and readily

assimilated proteins and highly unsaturated fatty acids, as well as

vitamins and functional compounds.85 Numerous studies have shown

that the appropriate level of insect protein in feed has the functions

of promoting growth, antioxidant capacity, immunity, liver and intesti-

nal health, regulating nutrient metabolism and intestinal flora of

aquatic animals. Table 3 summarize the black soldier fly meal, yellow

mealworm meal, and common housefly meal used for aquafeed in

China. Although the application of insect proteins in aquatic feeds has

shown promising results, however, there are still many constraints on

TABLE 1 Fermented plant protein sources for aquafeed in China.

Aquatic animals Plant protein Microorganism

Appropriate

supplemented
level References

Turbot (Scophthalmus maximus L.) Soybean meal Lactobacillus plantarum P8 34.62% Wang et al.110

Pacific white shrimp

(Litopenaeus vannamei)

Soybean meal Bacillus subtilis E20 44.43% Shiu et al.111

Pacific white shrimp

(L. vannamei)

Cottonseed meal B. subtilis BJ-1 20.60% Sun et al.112

Macrobrachium nipponense Soybean meal Mixture of microorganism

(Pediococcus acidilactic,

Enterococcus aecalis,

Saccharomyces cerevisiae,

Candida utilis, B. subtilis, Bacillus

licheniformis, Rhodopseudomonas

palustri).

20.00% Ding et al.113

Black sea bream (Acanthopagrus

schlegelii)

Soybean meal C. utilis 14.40% Zhou et al.114

Pacific white shrimp (L.

vannamei)

Soybean meal Lactobacillus spp. <30.90% Lin and Mui115

Black sea bream (A. schlegelii) Cottonseed meal B. subtilis BJ-1 16.00% Sun et al.116

Crucian carp (Carassius auratus

gibelio)

Mushroom bran hydrolysate Ganodermalucidum and S.

cerevisiae

6.40%–8.00% Zhang et al.117

Red tilapia (Oreochromis

mossambicus � Oreochromis

niloticus)

Enteromopha prolifera Lactobacillus acidophilus and S.

cerevisiae

3.70%–4.10% Yang et al.118

Pompano (Trachinotus ovatus) Soybean meal — 10.00% Lin et al.119

Gibel carp (Carassius auratus

gibelio var. CAS V)

Mixing of rapeseed meal, sprayed

corn husk, rice bran, palm meal,

and soybean meal

Lactobacillus spp. and Bacillus spp. 5.00% Cao et al.120

Largemouth bass (Micropterus

salmoides)

Soybean meal B. subtilis and Lactobacillus 15.68% He et al.121

Hybrid groupers (Epinephelus

fuscoguttatus♀ � Epinephelus

lanceolatus♂)

Rice protein Aspergillus oryzae 5.98% He et al.122

Nibea diacanthus Soybean meal — 19.65%–22.73% Li et al.123

Large yellow croaker

(Larimichthys crocea)

Soybean meal — 25.46% Wang et al.124

Snakehead (Channa

argus � Channa maculata)

Soybean meal — 7.20% Duan et al.125

Largemouth bass (M. salmoides) Soybean meal B. subtilis and Lactobacillus spp. 9.00% Jiang et al.126

Turbot (Scophthalmus

maximus L.)

Soybean meal Saccharomycopsis fibuligera isolate

Y27, Bacillus tequilensis KCTC

13622, B. subtilis strain D7XPN1

and Bacillus aryabhattai B8W22

— Dan et al.127

BU ET AL. 7

 17535131, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12865 by H

enan N
orm

al U
niversity, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the development of insect proteins in aquatic feeds, such as the rea-

sons for the differences in the effects of insect proteins on different

aquatic animals, and how to obtain greater economic benefits based

on the protection of fish health, which are worthy of more in-depth

research.

4.2.4 | Environmentally friendly

Protecting the aquatic environment and ensuring the sustainability of

aquaculture is another important goal for aquaculture in China. In the

past, wild fish or low-quality artificial formulated feeds were used to

feed aquatic animals, leading to excessive nitrogen and phosphorus

excretion and pollution of the aquatic environment. In intensive, high-

density aquaculture, the amount of residual bait and excreta exceeds

the decomposition capacity of microorganisms, resulting in increased

nitrogen and phosphorus concentrations in water, deterioration of

water quality, and eutrophication. This ultimately causes dysregulation

of the material and energy cycle of the aquaculture system.86

Recently, there has been a shift towards optimizing feed formulations

to improve nutrient utilization and reduce excessive nitrogen and

phosphorus excretion. A previous study reported that exogenous

enzymes, including phytase and non-starch polysaccharide enzymes,

in diets reduced the nitrogen and phosphorus excretion of Japanese

seabass (Lateolabrax japonicus).87 Diets with phytase supplementation

improved the utilization of minerals and reduce the phosphorus excre-

tion of rainbow trout (Oncorhynchus mykiss Walbaum).88 Meanwhile,

diets with 1500 U/kg phytase could improve growth and decrease the

nitrogen and phosphorus excretion of Channel catfish (Ictalurus

punctatus).89

Multiple influences of antibiotics in various aquatic animals,

including decreased17,90,91 and increased growth performance,92,93

body malformation,94 microbiota dysfunction,93,95 induced oxidative

stress96,97 and decreased immunity.98,99 More importantly, one study

reported a direct human health risk linked to the consumption of fish

treated with antibiotics in children.99 In recent years, aquatic nutri-

tionists have conducted many studies related to mitigating the harm-

ful effects of antibiotics on aquatic animals through nutritional

strategies, such as using cellulose and increased carbohydrate level in

diets.17,100 However, in general, there are relatively few studies

exploring the relationship between nutrition and the environment in

aquaculture in China.

4.3 | Progression in key processing technologies of
the aquafeed industry

Based on advances in research methods and innovations in research

concepts, breakthroughs have been made in key processing technolo-

gies such as feed pre-digestion techniques and extruded feed technol-

ogy in the aquafeed industry. The feed pre-digestion techniques

include physical pre-digestion, chemical pre-digestion, and biological

pre-digestion technologies, which aim to break down large molecules

into small molecules for improved digestion and absorption.101 Physi-

cal pre-digestion technology is accomplished through water, heat,

mechanical, or other physical processes, such as cutting short of ingre-

dients, de-mixing, steam granulation, extruding, steaming and micro-

waving. Chemical pre-digestion uses chemical reagents such as acid

and alkali to treat ingredients in the diet, including alkaline treatment,

ammonia treatment and oxidation treatment. Biological pre-digestion

is the treatment of feed ingredients by enzymatic or microbial

fermentation techniques to improve feed digestibility. The use of feed

pre-digestion technology can eliminate most of the toxic and harmful

substances and anti-nutritional factors in feeds, reduce the stress of

antigens in feeds on the intestines of aquatic animals, and improve

the feed utilization of aquatic animals.101 The use of feed pre-

digestion technologies can also improve the utilization rate of non-

conventional feed resources while making full use of cottonseed meal,

rapeseed meal, and other plant-based protein sources to alleviate the

shortage of feed ingredients in China.

TABLE 2 Enzymatic animal processing by-products for aquafeed in China.

Aquatic animals Source of hydrolysate

Enzyme used for

preparing
hydrolysate

Appropriate
supplemented level References

Turbot (Scophthalmus maximus) By-products of pollock Theragra

chalcogramma

— <10.80% Wei et al.128 and

Wei et al.129

Japanese flounder (Paralichthys

olivaceas)

Frames of pollock Theragra

chalcogramma

Alcalase and

flavourzyme

3.70% Zheng et al.130

Turbot (Scophthalmus maximus) Frames of pollock Theragra

chalcogramma

Alcalase and

flavourzyme

— Zheng et al.131

Japanese sea bass (Lateolabrax

japonicus)

Gut and head of pollock Theragra

chaloogramma

Protease 8.10% Liang et al.132

Large yellow croaker

(Pseudosciaena crocea)

Tissues of pollock Theragra

chalcogramma

Flavourzyme and

Alcalase

10.00% Tang et al.133

Turbot (S. maximus) Feather meal and blood meal of

poultry

— 8.00% Hao et al.134

Turbot (S. maximus) Chicken by-product — 2.00% Zhuang et al.135

8 BU ET AL.
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Compared with livestock feed, aquafeed has higher requirements

in terms of crushing size, steam conditioning, and pellet appearance.

Since the 1990s, extruded feed technology has been widely used in

the global aquafeed industry, bringing profound changes to the aqua-

feed development in China. Investigations related to extruded feeds

are also being conducted on many aquatic animals in China.102–106

The feed extrusion process is carried out under high temperatures

and pressure, leading to physical and chemical changes such as starch

pasting, protein denaturation, and inactivation of enzymes, toxic com-

ponents, and microbes. These changes enhance feed digestibility,106

reduce anti-nutritional factors, such as trypsin inhibition factor in soy-

beans, gossypol in cottonseed, and glucosinolate in rapeseed, and so

forth, and microorganisms in feed, as well as improve feed palatability

and the stability in water.107,108 However, the high temperatures and

long heating duration associated with the extrusion process can

reduce the digestibility of protein and amino acids and damage heat-

sensitive substances (e.g., vitamins A, E, and C; polyunsaturated fatty

acid).104 The Maillard reaction caused by lysine reacting with reducing

carbohydrates or carbonyl compounds can also result in the loss of

lysine and reduced protein biological potency.109 Therefore, it is nec-

essary to evaluate the effects of different extrusion conditions on the

utilization of nutrients, determine the most suitable extrusion condi-

tions, and improve the post-spraying technology. Breakthroughs in

these key processing technologies are essential for achieving efficient

and sustainable aquaculture practices. Regarding feed processing

equipment, initially, China heavily depended on imported aquafeed

machinery. Moreover, there were limited sets of feed equipment suit-

able for aquaculture in China. In fact, specific livestock and poultry

feed machinery were imported and then adapted for aquafeed pro-

duction. Over time, feed machinery manufacturing industry in China

has achieved substantial advancement, ensuring the production

capacity of aquafeed through ongoing introduction and innovation.

5 | CONCLUSIONS AND FUTURE
PERSPECTIVES

The evolution of aquaculture in China, transitioning from a traditional

practice to a thriving food production sector, has been accompanied

by significant advancements in aquaculture nutrition research and the

development of the aquafeed industry. This work highlights the jour-

ney of aquaculture nutrition research and feed industry in China,

emphasizing key achievements and future directions. In China, aqua-

culture nutrition research has transitioned from relying on natural pro-

ductivity to a comprehensive understanding of nutritional

requirements and mechanisms of nutrient metabolism in aquatic ani-

mals. Notably, this transformation has been facilitated by methodolog-

ical breakthroughs and conceptual innovations within aquaculture

nutrition research. These advancements have enriched our under-

standing of nutrient metabolism in aquatic animals and have facili-

tated the formulation of effective strategies to enhance growth,

health, and product quality. The concept of aquaculture nutrition

research in China has shifted towards resource conservation,

environmental friendliness, and the production of high-quality aquatic

products. Meanwhile, advanced processing technologies dramatically

improved feed quality, digestibility, and nutrient utilization in aquatic

animals, bolstering the sustainable aquaculture.

The aquaculture nutrition research and feed industry in China is

suggested to develop in the direction of environmental friendliness,

safety, intelligence, and cost-effectiveness. Additional research and

applied technological approaches may need to be strengthened in fol-

lowing areas: (1) searching for non-food protein sources such as

C1GP, insect protein source, and agriculture by-products that do not

compete for human food resources, and reducing dependence on

imports of fishmeal and soybean meal; (2) exploring the relationship

between nutrition and the environment, and laying the foundation

for the development of formulated feeds that reduce nitrogen and

phosphorus emissions and represent an alternative to antibiotics;

(3) developing digital and intelligent nutrition and feed application

systems, such as intelligent feed analysing and processing equip-

ment, and large-scale baiting systems, consistent with the develop-

ment of aquaculture models such as recirculating water

aquaculture and deep-sea aquaculture; (4) strengthening the multi-

disciplinary cross-collaboration of animal nutrition and genetic

breeding in aquaculture.
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