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基于深度搜索的改进角蜥蜴优化算法求解TSP问题
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(1华中科技大学 管理学院,武汉430074;2国家电网有限公司 国网北京市电力公司物资分公司,北京100054)

摘 要:针对角蜥蜴优化算法(hornedlizardoptimizationalgorithm,HLOA)无法求解旅行商问题(traveling
salesmanproblem,TSP),并且改进的连续型元启发式算法求解TSP问题存在寻优能力不足等问题,提出一种基于

深度搜索的改进角蜥蜴优化算法(improvedhornedlizardoptimizationalgorithmwithdepthsearch,DSIHLOA).该算

法通过双重编码方式将 HLOA离散化;通过提出的信息共享策略提高算法前期的收敛速度;设计深度搜索过程提

高算法的搜索能力,并提出Greedy-Insert、Greedy-Swap和2-Opt-2算子应用到深度搜索过程中.通过多个TSP标准

算例对DSIHLOA的性能进行测试,并与传统元启发式算法对比.结果表明:DSIHLOA拥有较好的求解精度和收敛

速度;与其他文献的改进连续型元启发式算法进行对比,DSIHLOA具有较好的寻优能力和稳定性.
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旅行商问题(travelingsalesmanproblem,TSP)是组合优化中的一个NP-hard问题[1],其目标是寻找一

条最优路径使旅行商能够以最小的总距离或总成本访遍所有城市,被广泛应用于物流配送、电子通信、项目

调度、城市规划等领域,具有重要的应用和研究价值[2].
目前求解TSP问题的常用算法主要包括精确算法和(元)启发式算法.以分支定界法、动态规划法为代

表的精确算法求解问题的时间复杂度随问题规模的增加呈指数级增长,只适用于求解小规模算例[3].元启发

式算法作为传统人工智能算法,通常具有较低的时间复杂度,并能够在合理的时间范围内找到接近最优解的

求解方案,更适用于解决大规模现实问题,尤其是遗传算法(geneticalgorithm,GA)、模拟退火算法(simula-
tedannealingalgorithm,SA)、蚁群算法(antcolonyoptimization,ACO)等元启发式算法[4].为实现高精度、
快速求解TSP问题的目标,许多学者对TSP问题的求解算法进行了深入研究.黄涛等[5]对GA进行改进,用
复制算子替换选择算子,并利用迭代次数和个体适应度自适应调节交叉和变异概率,提出了一种改进自适应

遗传算法,通过TSP标准算例的实验证明了提出的改进算法有较高的收敛精度和收敛速度;李泓波等[6]将

差分算法嵌入到ACO中,并改进了交叉和变异操作,通过在中小规模的TSP问题标准算例进行仿真实验,
证明了算法的有效性.

随着问题种类不断增加,问题规模不断扩大,越来越多的元启发式算法被设计出来,以寻求更快的速度

寻找到最优解,如灰狼优化算法(wolfoptimizationalgorithm,GWO)[7]、鲸鱼优化算法(whaleoptimization
algorithm,WOA)[8]、野马优化算法(wildhorseoptimizer,WHO)[9]等,但这些算法在提出时只适用于求解

  收稿日期:2024-12-12;修回日期:2025-01-16.
  基金项目:国家电网有限公司科技项目(5108-202218280A-2-187-XG).
  作者简介:魏杰(2000-),男,河北唐山人,华中科技大学博士研究生,研究方向为物流与供应链管理、车辆路径问题、元启

发式算法,E-mail:jiew@hust.edu.cn.
  通信作者:赵璇(1995-),女,山东潍坊人,华中科技大学博士研究生,研究方向为物流与供应链管理、随机服务系统,

E-mail:zhao1995@hust.edu.cn.
  引用本文:魏杰,习毅聪,赵璇.基于深度搜索的改进角蜥蜴优化算法求解TSP问题[J].河南师范大学学报(自然科学版),

2026,54(1):83-91.(WeiJie,XiYicong,ZhaoXuan.Improvedhornedlizardoptimizationalgorithmwithdepth
searchforsolvingtravelingsalesmanproblem[J].JournalofHenanNormalUniversity(NaturalScienceEdi-
tion),2026,54(1):83-91.DOI:10.16366/j.cnki.1000-2367.2024.12.12.0004.)



连续型问题.近年来许多研究人员针对TSP问题的特点在这些算法的基础上进行改进并取得一些成果.杨进

等[10]提出改进的猫群算法(catswarmoptimization,CSO),引入交换子和交换序的概念,对基本猫群算法进

行改进以求解TSP问题.ZHANG等[11]提出改进的变邻域离散鲸鱼优化算法(discretewhaleoptimization
algorithmwithvariableneighborhoodsearch,VDWOA),通过TSP标准算例的实验证明了算法的优化性能

和全局搜索能力有所提高.刘海龙等[12]结合GA和GWO,提出改进的融合遗传灰狼优化算法(GA-IGWO),
在筛选全局优秀个体后引入距离启发因子,更全面地探索解空间,避免陷入局部最优解,与其他改进GWO
算法相比,在求解TSP问题的性能上有了大幅提高.虽然已有相关研究对连续型元启发式算法进行改进以

求解TSP问题,但求解能力不足、寻优能力不强,以及一些改进算法只适用于小规模算例.因此,如何改进现

有连续型元启发式算法能够更高效更快速地求解TSP问题仍是亟待研究的热点问题.
PERAZA-VÁZQUEZ等[13]在2024年基于角蜥蜴如何隐藏和保护自己不受捕食者伤害的防御机制提

出了一种新型连续型元启发式算法———角蜥蜴优化算法(HLOA),该算法在寻找全局最优解的策略上表现

出良好的性能,同时提高了求解速度和优化能力,兼顾了全局优化和避免局部最优的特点,但目前只适用于

求解连续型问题,不适合求解TSP等离散优化问题.鉴于HLOA最新被提出,对其研究尚处于起步阶段,国
内外尚无对HLOA求解TSP问题的研究,对HLOA的实际应用潜力和效能探索还存在研究空白,亟待学

者挖掘与探究.为提高对现有改进连续型元启发式算法求解TSP问题的性能,同时拓展 HLOA的应用范

围,本文首次提出基于深度搜索的改进角蜥蜴优化算法(improvedhornedlizardoptimizationalgorithm
withdepthsearch,DSIHLOA),以求解TSP等离散优化问题.

1 TSP及其数学模型

TSP一般可描述为:现有一个旅行商需要访问n 个城市,城市集合为 N,随机从某一个城市出发,依次

访问每一个城市且只能访问一次,最终返回起始城市,为该旅行商设计访问路线,使得旅行商的总行驶路径

最短.给定城市i到城市j之间的距离为d(i,j),在对称TSP中,d(i,j)=d(j,i).决策变量xij=1时,旅行

商先访问城市i再访问城市j,否则xij =0.用数学模型表示TSP的目标函数如式(1)所示:

minZ=∑
n

i=1
∑
n

j=1
dijxij. (1)

  TSP的约束条件为:

∑
n

i=1
xij =1,∀j∈N, (2)

∑
n

j=1
xij =1,∀i∈N, (3)

∑
i∈S
∑
j∈S

xij ⩽|S|-1,∀S⊂N,2⩽|S|⩽n-1, (4)

其中,约束(2)和(3)表示每个城市只能访问一次,约束(4)为消除子回路.

2 角蜥蜴优化算法

HLOA是受美国中南部到墨西哥东北部的爬行动物角蜥蜴的生活习性启发而设计的元启发式算法[14].
该算法通过将角蜥蜴的多种防御机制抽象为数学模型,构建了包含两种被动与一种主动防御策略的优化算

法,其中被动防御方法包括:①隐藏,角蜥蜴通过改变自身皮肤的颜色、图案、形状等,与环境融为一体,混淆

敌人视线[15];②移动,也称为逃跑策略,以远离敌人.主动防御方法也被称为侵略性策略,角蜥蜴会从眼睛里

喷出一股短血,驱赶敌人[16].同时,角蜥蜴皮肤颜色变化的快慢与α-黑色素细胞刺激激素(α-melanophore
stimulatinghormone,α-MSH)水平有关[17].因此,角蜥蜴优化算法将以上防御策略总结成算法的5个策略,
分别为隐藏行为、皮肤暗化或亮化、喷血、逃跑、α-MSH比率.以下将对每个策略进行详细介绍.
2.1 策略一:隐藏

角蜥蜴通过改变自身皮肤的颜色、图案和形状来躲避敌人的追捕,提高自身生存能力,这是一种适应性
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行为,角蜥蜴颜色变化理论已实现由数学形式来表示.国际照明委员会已对颜色评价系统进行了定义[18],通
过笛卡尔坐标系统和极坐标系统计算颜色空间中的颜色,对计算公式进行抽象,将角蜥蜴隐藏行为的变化抽

象成可行解的更新公式[16],如等式(5)所示.

Xi(t+1)=Xbest(t)+(∂-
∂t
MaxG

)[c1(sin(Xr1
(t))-cos(Xr2

(t)))-

(-1)σc2(cos(Xr3
(t))-sin(Xr4

(t)))], (5)

其中Xi(t+1)表示第t+1代的第i个个体;Xbest(t)为第t代最优个体;r1,r2,r3,r4 是种群中随机选择的

互不相同的个体编号;Xr1
(t),Xr2

(t),Xr3
(t),Xr4

(t)是第t代的r1,r2,r3,r4 对应的个体代表的可行解;

MaxG 是算法的最大迭代次数;σ是0-1变量,取值规则为每次使用时在[0,1]范围内生成一个随机数,若大

于0.5,则σ=1,否则σ=0;c1 和c2 是标准化调色盘里随机选择的数值,且c1 ≠c2;∂为一个定值.
2.2 策略二:皮肤暗化或亮化

角蜥蜴的皮肤可以根据外界太阳能的吸收量改变自身的颜色,式(6)表示角蜥蜴皮肤颜色变浅策略,式
(7)表示角蜥蜴皮肤颜色变深策略.

Xworst(t)=Xbest(t)+
1
2
·L1·sin(Xr1

(t)-Xr2
(t))-(-1)σ

1
2
·L2·sin(Xr3

(t)-Xr4
(t)),(6)

Xworst(t)=Xbest(t)+
1
2
·D1·sin(Xr1

(t)-Xr2
(t))-(-1)σ

1
2
·D2·sin(Xr3

(t)-Xr4
(t)).(7)

其中Xworst(t)是第t代最差的个体,L1 和L2 是[Lightening1,Lightening2]范围的随机数,D1 和 D2 是

[Darkening1,Darkening2]范围的随机数,具体调色范围数值参考PERAZA-VÁZQUEZ等[13]的研究.
2.3 策略三:喷血

角蜥蜴可通过从眼睛中喷射血液抵挡敌人,该过程可用抛射运动表示,将血液运动分解成垂直运动和水

平运动,将运动方程拟化为解向量更新公式如式(8)所示.

Xi(t+1)=[v0cos(α-
1

MaxG
)+ε]Xbest(t)+[v0sin(α-α 1

MaxG
)-g+ε]Xi(t), (8)

其中v0 为血液喷射的初速度;α 为血液喷射运动方向与水平方向的夹角,在算法中取为定值;ε 为一个定值

参数;g 表示重力加速度.
2.4 策略四:逃跑

角蜥蜴会以一定概率逃离敌人的追捕,基于该种防御机制,产生了一个包含局部和全局运动函数以更新

可行解,如式(9)所示.

Xi(t+1)=Xbest(t)+Wa(
1
2-ζ)Xi(t), (9)

其中,Wa 为一个随机数且Wa ∈ [-1,1],ζ∈N(0,1).
2.5 策略五:α-MSH比率

角蜥蜴颜色变化的快慢由自身的α-MSH激素水平决定,算法中定义每个个体的α-MSH激素水平为:

m(i)=
Fmax-F(i)
Fmax-Fmin

, (10)

其中,Fmax 为当前种群中适应度最高的个体,Fmin为当前种群中适应度最低的个体,F(i)为第i个个体的适

应度,m(i)∈ [0,1].当m(i)<0.3时,对第i个个体进行更新,更新公式为:

Xi(t)=Xbest(t)+
1
2
[Xr1

(t)-(-1)σXr2
(t)]. (11)

3 基于深度搜索的改进角蜥蜴优化算法

3.1 解编码策略

本文采用自然数和实数的双重编码方式.第一重为自然数编码,表示旅行商访问城市的顺序;第二重为
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实数编码,并实现实数编码向自然数编码的转换.ZHANG等[19]曾采用将连续值转换成索引值的方法,对连

续值向量的每一维按升序排列获得其对应的索引序号,实现离散化编码,但该种方法并没有限制范围,容易

降低搜索能力.本文对该种方法进行改进,限制连续值的变化范围,进而提高搜索能力.假设个体i的第一重

编码为Xi1=(1,2,3,4,5),第二重编码为Xi2=(1.1,1.5,1.9,3.7,4.8),个体j的第一重编码为Xj1=(2,5,

4,1,3),第二重编码为Xj2=(2.3,4.5,3.4,1.3,2.9),解更新过程为每个个体的第二重编码进行运算得到个

体k的第二重编码Xk2=Xj2-Xi2=(1.2,3.0,1.5,-2.4,-1.9),运算后对解进行修复使得每一维的值始

终在[1,n]内(n 为城市数量),修复方法为将超出边界值的值更改为其所靠近的边界值,即修复后的个体k
的第二重编码为Xk2=(1.2,3.0,1.5,1.1),对修复后的结果重新排序,得到个体k的第一重编码Xk1=(3,5,

4,1,2),即个体k代表的可行解表示的旅行商访问城市顺序为3→5→4→1→2.
3.2 初始解集生成

本文采用贪婪算法生成和随机生成两种方式生成初始解集,假设种群规模为 Npop
,城市数量为n.① 通

过贪婪算法生成一个可行解;②Npop-1个可行解的生成方式:对每个个体i随机生成Xi2=(x1,x2,…,xn)
的第二重编码向量,每个元素的取值范围为[1,n],通过解修复方式生成个体i的第一重编码向量,完成初始

解集生成.
3.3 信息共享策略

元启发式算法普遍存在收敛速度较慢的缺点,为提高算法的收敛速度,本文提出了信息共享策略.对于

每个种群中的每个个体i,在完成HLOA的每个策略后,以一定的概率PI 全局最优解的信息片段.在算法初

期,PI 的值应偏高,促进种群个体获得全局最优解的优秀片段,继而起到提高收敛速度的作用;但在算法后

期,过高的PI 值会使得算法陷入局部最优,个体无法继续进化.因此,需采取自适应性信息共享策略,自动调

整信息共享概率,概率PI 的计算公式为:

PI =ωe-θt, (13)
其中,ω,θ∈(0,1)为定值,t为当前迭代次数.操作过程为:在全局最优解中随机选择两点p1和p2及其之间

的城市序号,将个体i的对应位置以该片段替换,并对新的解向量进行修复,使个体i代表的解为可行解.
3.4 深度搜索

为使算法有更好的局部搜索能力,本文采用2种常用操作算子,分别为Insert和Swap算子,并设计3种

深度搜索操作算子,分别为Greedy-Insert、Greedy-Swap和2-Opt-2算子,提升算法寻优性能.
(1)Insert算子.以8个城市的路径为例,假设当前访问路线为1→2→3→4→5→6→7→8,随机选择一个

城市,如选择城市4,随机插入到另一个城市之后,如选择插入到城市6之后,则操作后的访问路线为1→2→
3→5→6→4→7→8.

(2)Swap算子.以8个城市的路径为例,假设当前访问路线为1→2→3→4→5→6→7→8,随机选择两个

城市,如选择城市4和6,交换两个城市的位置,操作后的访问路线为1→2→3→6→5→4→7→8.
(3)Greedy-Insert算子.基于贪婪算法思想对Insert算子进行改进.随机选择一个城市,将该城市插入到

总行驶距离减少最多的位置.
(4)Greedy-Swap算子.基于贪婪思想对Swap算子进行改进.随机选择一个城市,将该城市尝试与其他

所有城市位置交换,选择总行驶距离减少最多的城市位置完成最终交换.
(5)2-Opt-2算子.本文对2-Opt算子进行改进,设计2-Opt-2算子:随机选择可行解中的一个城市,以该

城市在可行解中的位置为起点,向其中一个方向随机选择连续的几个城市形成的片段进行翻转,翻转完成

后,继续以该位置为起点,向另一个方向选择相同数量的连续城市形成的片段继续翻转,得到操作后的可行

解.以8个城市的路径为例,假设当前访问路线为1→2→3→4→5→6→7→8,随机选择一个城市,如选择城市

4(路径的第4个位置),向左随机选择连续的几个城市,如选择城市2和3,则对2→3→4路径进行翻转,得
到路径1→4→3→2→5→6→7→8,继续以路径的第4个位置为起点,向右选择等数量的连续城市(选择城市

5和6),则对路径2→5→6进行翻转,得到最终变化后的路径为1→4→3→6→5→2→7→8.
深度搜索过程应用于原始 HLOA 与信息共享策略过程之后,通过对Insert、Swap、Greedy-Insert、

Greedy-Swap和2-Opt-2算子的循环使用以达到深度搜索的效果,提高算法寻优能力.具体深度搜索伪代码
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如算法1所示.
算法1 深度搜索

  输入:x(角蜥蜴个体代表的可行解),β(深度搜索最大

次数)

1:i←1,k←1
2:Whilei⩽β
3: Switchk
4:  Case1
5:   Ifr>0.5// 以0.5的 概 率 实 施Insert和

Greedy-Insert算子

6:    x'←Insert(x)//对x 采用Insert算子

7:   Else
8:    x'←GreedyInsert(x)

9:   EndIf
10: Case2
11:   Ifr>0.5// 以0.5的概率实施Swap和

Greedy-Swap算子

12:    x'←Swap(x)

13:   Else
14:    x'←GreedySwap(x)

15:   EndIf
16: Case3
17:   x'←2Opt2(x)

18: EndSwitch
19: Iff(x')<f(x)//如果所得的解有更好的适应

度值,则替换原来的解

20:  x←x',i←1
21: Else
22:  k←k+1//若x 没有更新则采用下一个算子

再次进行搜索

23: EndIf
24: Ifk⩾3//若经过所有算子的操作,x 都没有进

化,进入下一次深度搜索

25:  i←i+1,k←1
26: EndIf
27:EndWhile
28:Returnx

3.5 算法流程及复杂度计算

根据 HLOA 的算法原理和对 HLOA
的改进策略,DSIHLOA流程图如图1所示.
HLOA的算法复杂度在文献[13]中已得到

精确的计算,为O(I×P×D×O(T)),其
中I为最大迭代次数,P 为种群规模,D 为

问题维度,O(T)为目标函数的计算复杂度.
根据图1展示的DSIHLOA算法流程,相较

于原始的 HLOA,解修复过程、信息共享策

略和深度搜索过程被加入,在每个个体的每

次迭代过程中,每个过程的算法复杂度分别

为O(1)、O(1)和O(β×O(L)),其中β为深

度搜索的最大次数,O(L)为复杂度最高的

搜索算子在每次计算时的计算复杂度.因
此,DSIHLOA的算法复杂度为O(I×P×
D×O(T)×β×O(L)).与 HLOA 相比,

DSIHLOA的计算量与计算时间会与β 和

O(L)的值密切相关.

4 仿真实验与结果分析

为测试本文设计的DSIHLOA的有效

性,本章基于TSP对其做仿真实验分析.实
验环 境 为Intel(R)Core(TM)i5-8300H
CPU@2.3GHz,运行内存16GB,Windows10操作系统以及 MATLAB2019b版本软件.选取TSPLIB数据

集中的标准对称TSP算例进行实验.算法参数设置为:∂=2,v0=1,ε=10-6,α=π/2,g=0.009807,ω=0.9,
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θ=0.7,β=80.
4.1 DSIHLOA求解能力

下面选取TSPLIB数据集中的9个算例验证DSIHLOA求解能力,求解结果如表1所示.对每个算例进

行10次独立实验,初始种群规模均设为20,最大迭代次数为300.
表1 DSHLOA算法求解TSP实验结果

Tab.1 ExperimentalresultsofDSHLOAalgorithmforsolvingTSP

算例 Opt Best Ave BER MER

dantzig42 699 688.3 692.1 -0.0153 -0.0099

att48 33522 33523.7 33772.2 0.0001 0.0075

eil51 426 429.5 433.5 0.0083 0.0176

berlin52 7542 7544.4 7645.6 0.0003 0.0137

st70 675 699.7 713.2 0.0366 0.0566

算例 Opt Best Ave BER MER

pr76 108159 110656.0 112783.4 0.0231 0.0428

kroa100 21282 23511.9 24235.5 0.1048 0.1388

tsp225 3916 4222.1 4526.9 0.0782 0.1560

a280 2579 2763.9 2773.1 0.0717 0.0752

  从表1可以看出,DSIHLOA对于dantzig42算例求得的结果优于已知最优解(Opt),对其他算例求得

的结果非常接近最优解,特别是对att48和berlin52算例的求解结果与最优解相差无几,其中最优解误差率

(BER)最大为0.1048,BER均值为0.0340,平均解误差率(MER)最大为0.1560,MER均值为0.0554.从总

体上看DSIHLOA对于不同规模城市都具有较强的全局搜索能力,无论对于dantzig42、att48等小规模算

例,还是tsp225、a280等中大规模算例都能获得比较理想的结果.附录S1为求解dantzig42、att48和berlin52
算例所获得的路径图.
4.2 DSIHLOA与经典元启发式算法对比

为验证算法有效性,本节将DSIHLOA与HLOA、GA、SA和PSO进行对比.其中 HLOA是对 HLOA
只进行离散化的算法,GA和SA是经典的离散型元启发式算法,PSO是经典的连续型元启发式算法且已完

成离散化.选取TSPLIB数据集中的13个算例进行实验,每种算法对每个算例进行10次实验,初始种群规

模均设为20,最大迭代次数均为300(SA的内循环最大次数为50),实验结果如附录表S1所示.
从表S1可以看到,DSIHLOA在13个测试算例中所求得的最优解“Best”和平均值“Ave”均优于其他

4个算法,说明DSHLOA的寻优能力要优于其他用于对比的经典元启发式算法;DSIHLOA在10个算例中

的标准差“Std”统计量优于其他算法,说明DSIHLOA的稳定性要优于其他算法.
4.3 DSIHLOA与最新改进元启发式算法对比

为进一步验证DSHILOA的有效性,本节将它与其他文献中最新提出的求解TSP问题的改进连续型元

启发式算法进行对比,包括改进融合遗传灰狼算法(GA-IGWO)、改进猫群算法(CSO)和改进鲸鱼优化算法

(VDWOA),分析结果如表2所示.
在表2中,DSIHLOA求得的最优解在11个算例中都优于其他算法求得的结果,说明本文算法有着较强的

全局搜索能力;而DSIHLOA求得的平均值结果在11个算例中优于其他算法,有8个算例的标准差优于其他算

法,验证了本文算法有较好的鲁棒性和稳定性.从总体上来说,DSIHLOA的寻优能力和稳定性都具有优势.
本节也从算法的复杂度上对DSIHLOA与GA-IGWO、CSO和 VDWOA进行比较分析,GA-IGWO、

CSO和VDWOA的算法复杂度分别为O(I×P×D×O(T)×O(L))、O(I×P×D×O(T))+O(L)和
O(I×P×D×O(T)×O(L)).从对比中可以看出,除了算法复杂度最低的CSO以外,DSIHLOA与其他两

种算法的算法复杂度相比,增加了O(β),这也就意味着,与其他算法相比,β的大小将直接影响DSIHLOA
在计算复杂度上的优劣程度.而由于DSIHLOA的种群质量较高,且深度搜索过程提高了算法的搜索能力,
因此,DSIHLOA可以以较小的迭代次数和较短的运行时间获得高质量的解.在4.6节中,本文对DSIHLOA
的时间性能进行了更详细的实验分析.
4.4 消融实验

为验证本文提出的信息共享策略对 HLOA算法的改进机制的有效性,本节进行消融实验.首先定义:

DSIHLOA-Ⅰ为缺少信息共享策略的DSIHLOA.选取att48、kroa100和gr137算例进行收敛性分析,最大

迭代次数为300,实验结果如图2所示.
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表2 DSHILOA与其他文献算法实验结果对比

Tab.2 ComparisonresultsofDSHILOAandotheralgorithms

算例 统计量 DSIHLOA GA-IGWO CSO VDWOA

dantzig42 Best 688.3 - 689.0 688.3

Ave 692.1 - - 688.3

Std 7.5 - - 0.0

att48 Best 33523.7 33444.0 - 92224.0

Ave 33772.2 33956.9 - 105251.4

Std 122.9 217.1 - 4998.6

eil51 Best 429.5 - 447.0 1018.5

Ave 433.5 - - 1139.9

Std 1.8 - - 48.8

berlin52 Best 7544.4 - - 18197.5

Ave 7645.6 - - 19431.8

Std 61.9 - - 697.4

st70 Best 699.7 - 694.0 2510.4

Ave 713.2 - - 2706.1

Std 6.4 - - 98.5

pr76 Best 110656.0 117823.3 - 149212.9

Ave 112783.4 120624.0 - 150455.4

Std 1430.3 1304.6 - 530.2

gr96 Best 540.9 698.0 - 639.8

Ave 548.0 711.9 - 705.2

Std 4.4 6.9 - 37.4

算例 统计量 DSIHLOA GA-IGWO CSO VDWOA

kroa100 Best 23511.9 - - 123749.0

Ave 24235.5 - - 134691.7

Std 376.6 - - 4871.7

gr137 Best 742.3 956.7 - 900.1

Ave 753.7 962.5 - 970.1

Std 6.7 2.4 - 25.8

kroa200 Best 37854.4 - - 283713.0

Ave 38303.2 - - 291565.1

Std 287.1 - - 4084.0

tsp225 Best 4222.1 - - 9938.8

Ave 4526.9 - - 10025.5

Std 193.6 - - 69.8

a280 Best 2763.9 - - 2815.3

Ave 2773.1 - - 2818.3

Std 11.6 - - 1.0

lin318 Best 50178.8 - - 114819.2

Ave 52195.2 - - 118513.7

Std 1499.3 - - 1399.6

rd400 Best 21220.6 - - 188651.4

Ave 21553.8 - - 192709.0

Std 196.3 - - 2242.2

  通过消融实验的收敛曲线可以看

出,在3种规模算例的实验下,DSIH-
LOA在拥有信息共享策略时,算法前

期的收敛速度大幅提升,这也保证了为

算法后期提供更优秀的种群个体,以提

高算法的寻优能力.
4.5 DSIHLOA的收敛性

为进一步分析 DSIHLOA 的收敛

速度和寻优能力,本文选取 GA、SA、

HLOA和 VDWOA4种算法进行对

比,分别选取小、中、大规模算例att48、

gr137和rd400进行收敛性分析.各算

法收敛曲线如图3所示.
根据图3可以看出,对于算例att48

和rd400,GA、HLOA和 VDWOA的求

解精度较低,且收敛速度很慢,而DSIHLOA在迭代开始时就开始收敛,SA的收敛速度较快,但与DSIHLOA
相比仍较慢;对于算例gr137,HLOA的求解能力较高于SA,且与VDWOA相当,但DSIHLOA的求解能力仍

有明显的优势.从收敛图可以看出,在小、中、大规模算例中,DSIHLOA均可在20代以内收敛到较好的结果.由
于设计了初始解的生成策略,可以在算法初期以一个较好的解开始进行搜索过程,从而提高算法的全局搜索能力.
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4.6 DSIHLOA的时间性能分析

为进一步分析DSIHLOA与其他改进算法在时间

上的性能,本节通过pr76和gr137算例从时间和搜索

能力方面,综合评估算法性能.GA-IGWO是在求解精

度和求解时间上综合考量下较为优秀的算法,因此,本
文以DSIHLOA和GA-IGWO对比为例.对于pr76算

例,DSIHLOA 用时6.67s找到的解的路径长度为

117586.0,而GA-IGWO用时7.00s找到的解的路径

长度 为 117823.3;而 对 于 gr137,DSIHLOA 用 时

5.02s找到的解的路径长度为804.426,而 GA-IGWO
用时13.55s找到的解的路径长度为956.7,可以认为

DSIHLOA的求解性能较好,深度搜索过程提高了算

法的搜索能力,使得DSIHLOA能够在更短时间内搜

索到更好的解.

5 结 论

本文对 HLOA算法进行改进,设计了DSIHLOA
并在TSP问题上进行了求解验证.设计了双重编码方式将HLOA离散化;设计了一种信息共享策略提高算

法的收敛速度;设计了深度搜索过程,通过采用Insert、Swap算子并设计了Greedy-Insert、Greedy-Swap和

2-Opt-2算子,提高算法的搜索能力.选取多个TSP标准算例进行实验,与只进行离散化的 HLOA,传统的

GA、SA、PSO和其他文献算法GA-IGWO、CSO、VDWOA进行对比,验证提出的DSIHLOA的有效性;通
过DSIHLOA的收敛性和时间性能综合分析,表明了DSIHLOA在求解TSP问题上有较好的性能.

目前对HLOA的研究刚刚起步,未来研究将进一步对DSIHLOA进行改进,尝试使用其他搜索算子并

设计新的搜索算子,提出搜索算子的自适应选择策略,以提高算法的求解速度和在大规模算例上的寻优能

力;通过设计提高种群多样性的策略,提高算法跳出局部最优的能力.此外,研究将该算法用于其他离散型问

题上,以拓展HLOA的应用领域.

  附录见电子版(DOI:10.16366/j.cnki.1000-2367.2024.12.12.0004).
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Improvedhornedlizardoptimizationalgorithmwithdepth
searchforsolvingtravelingsalesmanproblem

WeiJie1,XiYicong2,ZhaoXuan1

(1.SchoolofManagement,HuazhongUniversityofScienceandTechnology,Wuhan430074,China;

2.StateGridBeijingProcurementCompany,StateGridCorporationofChina,Beijing100054,China)

  Abstract:Aimingattheproblemsofthehornedlizardoptimizationalgorithm(HLOA)cannotsolvethediscreteprob-
lems,forexample,thetravelingsalesmanproblem(TSP),andtheimprovedcontinuousmetaheuristicalgorithmhasinsuffi-
cientoptimizationcapabilityforsolvingtheTSP,thispaperproposedanimprovedhornedlizardoptimizationalgorithmwith
depthsearch(DSIHLOA).ThealgorithmdiscretizestheHLOAutilizingdoublecoding.Theproposedinformationsharing
strategyimprovestheconvergencespeedofthealgorithmattheearlystage.Thedepthsearchprocessimprovesthesearchabili-
tyofthealgorithm.TheproposedGreedy-Insert,Greedy-Swap,and2-Opt-2operatorsareappliedtothedepthsearchprocess.
ThroughsimulationexperimentsonseveralTSPinstancesandcomparingthemwithtraditionalmetaheuristicalgorithms,the
resultsshowthatDSIHLOApossessesbettersolutionaccuracyandconvergencespeed.Comparedwithotherimprovedcontinu-
ousmetaheuristicalgorithmsintheliterature,theresultsshowthatDSIHLOApossessesbetteroptimizationsearchabilityand
stability.

Keywords:travelingsalesmanproblem;hornedlizardoptimizationalgorithm;informationsharingstrategy;depth
search
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  附 录

表S1 DSIHLOA与经典元启发式算法实验结果对比

Tab.S1 ComparisonresultsofDSIHLOAandclassicalmetaheuristicalgorithms

算例 统计量 DSIHLOA HLOA GA SA PSO

dantzig42 Best 688.3 688.3 2091.5 688.3 1184.9

Ave 692.1 714.9 2216.6 714.1 1335.4

Std 7.5 79.6 79.9 18.1 92.5

att48 Best 33523.7 64767.4 105305.8 36059.7 78528.2

Ave 33772.2 86719.6 119134.7 38485.7 82990.6

Std 122.9 16508.5 8092.7 2465.2 2871.5

eil51 Best 429.5 1271.8 1324.2 440.8 975.9

Ave 433.5 1343.0 1386.2 454.6 1069.3

Std 1.8 68.6 40.6 10.4 53.2

berlin52 Best 7544.4 20751.4 22870.2 8139.7 13781.3

Ave 7645.6 22259.5 24181.1 8793.5 15986.6

Std 61.9 997.9 1114.1 374.5 911.9

st70 Best 699.7 2975.8 2853.4 737.7 2200.6

Ave 713.2 3165.0 3106.9 771.5 2333.7

Std 6.4 128.1 114.5 27.5 87.6

pr76 Best 110656.0 150779.9 470438.5 134098.0 209778.9

Ave 112783.4 150779.9 487827.0 150031.0 241823.3

Std 1430.3 0.0 9263.4 12390.5 20042.4

gr96 Best 540.9 742.2 2779.2 586.1 1625.7

Ave 548.0 779.4 2922.5 641.5 2026.9

Std 4.4 88.3 61.7 38.6 225.0



续表

算例 统计量 DSIHLOA HLOA GA SA PSO

kroa100 Best 23511.9 92873.5 136969.0 26812.7 103789.9

Ave 24235.5 104051.9 143414.7 30040.2 109401.1

Std 376.6 6189.2 3912.5 1748.0 2892.7

gr137 Best 742.3 973.0 5008.6 974.7 4152.2

Ave 753.7 990.9 5344.4 1007.9 4743.2

Std 6.7 6.3 165.0 29.5 318.1

kroa200 Best 37854.4 218725.3 301026.8 46795.8 233154.7

Ave 38303.2 237382.8 306333.7 51114.2 237999.1

Std 287.1 10486.8 4523.0 2707.3 3155.3

tsp225 Best 4222.1 9949.8 36709.3 5416.4 28895.9

Ave 4526.9 10536.1 38060.4 5770.5 30192.1

Std 193.6 893.7 728.0 256.6 906.5

a280 Best 2763.9 2818.6 30289.5 4437.8 29250.2

Ave 2773.1 2818.6 31242.4 4729.1 30859.7

Std 11.6 0.0 557.5 140.2 979.9

rd400 Best 21220.6 157240.3 195355.8 29406.4 136076.4

Ave 21553.8 166099.7 198026.8 30965.0 138952.6

Std 196.3 6621.3 1560.9 1126.1 1667.2


