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Background: The pathogenesis of nonalcoholic fatty liver disease (NAFLD) has been attrib-

uted to increased systemic inflammation and insulin resistance mediated by visceral ad-

ipose tissue (VAT), although the exact mechanisms are undefined. Exosomes are

membrane-derived vesicles containing messenger RNA, microRNA, and proteins, which

have been implicated in cancer, neurodegenerative, and autoimmune diseases, which we

postulated may be involved in obesity-related diseases. We isolated exosomes from VAT,

characterized their content, and identified their potential targets. Targets included the

transforming growth factor beta (TGF-b) pathway, which has been linked to NAFLD. We

hypothesized that adipocyte exosomes would integrate into HepG2 and hepatic stellate cell

lines and cause dysregulation of the TGF-b pathway.

Methods: Exosomes from VAT from obese and lean patients were isolated and fluorescently

labeled, then applied to cultured hepatic cell lines. After incubation, culture slides were

imaged to detect exosome uptake. In separate experiments, exosomes were applied to

cultured cells and incubated 48-h. Gene expression of TGF-b pathway mediators was

analyzed by polymerase chain reaction, and compared with cells, which were not exposed

to exosomes.

Results: Fluorescent-labeled exosomes integrated into both cell types and deposited in a

perinuclear distribution. Exosome exposure caused increased tissue inhibitor of matrix

metalloproteinase-1 (TIMP-1) and integrin anb-5 expression and decreased matrix

metalloproteinase-7 and plasminogen activator inhibitor-1 expression in to HepG2 cells

and increased expression of TIMP-1, TIMP-4, Smad-3, integrins anb-5 and anb-8, and matrix

metalloproteinase-9 in hepatic stellate cells.
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Conclusions: Exosomes from VAT integrate into liver cells and induce dysregulation of TGF-b

pathway members in vitro and offers an intriguing possibility for the pathogenesis of NAFLD.

ª 2014 Elsevier Inc. All rights reserved.
1. Introduction capable of integrating into hepatocyte and HSC lines in vitro,
The pathogenesis of nonalcoholic fatty liver disease (NAFLD) in

patients with obesity has long been attributed to increased

systemic inflammation and insulin resistance mediated by

visceral adipose tissue (VAT), though the exact mechanisms

have yet to be defined [1e3]. This hypothesis is based on the

findings that VAT is more metabolically active than subcu-

taneous adipose tissue, and many of the mediators secreted

from visceral adipose are pro-inflammatory cytokines [4e9].

Indeed a significant body of work supports a role for VAT in the

pathogenesisofNAFLD,with increasedvisceraladiposity clearly

associated with NAFLD [4,10,11]. Despite the strong correlation

between visceral adiposity and NAFLD, no direct link between

adipocytes andhepatocytedysfunctionhasbeendemonstrated.

Expanding research in the field of exosomesmay explain the

mechanism by which VAT exerts its effects on liver tissue in

NAFLD. Exosomes are membrane-derived vesicles with a lipid

bilayer, 40e120 nm in size, which contain microRNA (miRNA),

messenger RNA, and proteins. They are derived from the endo-

lysosomal pathway and have been isolated from nearly every

cell type. Exosomes have been implicated in immune surveil-

lance, tissue maintenance and repair, and in the development

and progression of cancers, autoimmune diseases, and neuro-

degenerative diseases [12e16]. One mechanism by which exo-

somesmaymediate function is by transportingmiRNAs that act

as posttranscriptional regulators of messenger RNA expression,

and as suchhave the ability to induce significant fold changes in

the protein products of a large number of genes [17,18].

In an attempt to better understand how exosomes from

adipocytes may be implicated in disease pathogenesis in pa-

tients with morbid obesity, we isolated and characterized the

content of exosomes from VAT of obese and lean female ad-

olescents in an earlier separate study (article under review).

These experiments evaluated exosomes from 12 adolescent

females; 7 obese, and 5 lean. Only miRNAs were found, and

using Pathway Analysis software (Ingenuity Systems,

Redwood City, CA), we identified potential targets of those

miRNAs that were differentially expressed between exosomes

from lean and obese VAT. The transforming growth factor

beta (TGF-b) pathway was ranked second of those pathways

predicted to be targeted by the differentially expressed miR-

NAs. Alterations in the TGF-b pathway have been linked to the

development of NAFLD. Pathway activation results in

increased extracellular matrix production (ECM) by hepatic

stellate cells (HSC), and also inhibits production of matrix-

degrading proteases [18e21]. Both hepatocytes and HSC are

integral to the development of NAFLD, though via different

mechanisms. Activation of HSC triggers ECM production,

whereas injury to hepatocytes may be a trigger for the initial

activation of the TGF-b pathway [22e25]. If adipocyte exo-

somes could induce TGF-b pathway dysregulation in liver

cells, they could be implicated in the pathogenesis of NAFLD.

Thus, we hypothesized that exosomes from VAT would be
and would cause dysregulation of TGF-b pathway mediators.

2. Materials and methods

2.1. Adipose collection

VAT was collected from mixed race female adolescents (n ¼ 4),

aged 15e17 y, body mass index (BMI) 35e46 who underwent

laparoscopic sleeve gastrectomy for the treatment of morbid

obesity at our institutionby removing thegreater omentumthat

was part of the stomach specimen. VATwas also collected from

one lean adolescent female, aged 16 y, BMI 25, who underwent

laparoscopic cholecystectomy. The study was approved by the

institutional review board, and informed assent and consent

were obtained from all subjects and legal guardians, respec-

tively. Samples were obtained in the operating room and

immediately stored in phosphate buffered saline (PBS).

2.2. Exosome culture and isolation

Exosomes were isolated from VAT using the protocol estab-

lished by Deng, et al. [26,27]. Samples were dissected into w4-

mm cubes, cultured in 12-well plates containing 3 mL/well of

serum-free Dulbecco modified Eagles medium (Life Technolo-

gies, Carlsbad, CA) with 50 mg/mL gentamicin (SigmaeAldrich,

St. Louis,MO), andcultured ina37�C incubator inanatmosphere

of 5% CO2 and/or 95% air for 1 h. Exosomes were isolated from

supernatant using ExoQuick-TC Precipitation Solution (System

Biosciences, Mountain View, CA) and stored in PBS at �80�C.

2.3. Cell culture

The human hepatoma cell line HepG2 was purchased from

American Type Culture Collection (Manassas, VA); the human

HSC line HHSteC was purchased from ScienCell Research

Laboratories (Carlsbad, CA). HepG2 cells were cultured in eagle

minimum essential medium supplemented with 10% fetal

bovine serum and 1% penicillinestreptomycin solution

(10,000 IU/mL; 10,000 mg/mL), all purchased from American

Type Culture Collection. HHSteC cells were cultured in Stellate

Cell Medium with 2% fetal bovine serum and 1% pen-

icillinestreptomycin solution (10,000 IU/mL; 10,000 mg/mL)

(ScienCell Research Laboratories). HHSteC cells were cultured

in poly-D-lysine-coated 75 cm2 culture flasks (Corning Incor-

porated Life Sciences, Tewksbury, MA). All cells were cultured

in an incubator at 37�C and 5%CO2 and/or 95% air atmosphere.

2.4. Microscopy

Exosome integration into cells was evaluated using a protocol

modified from Chiba, et al. [28]. Exosomes from VAT were

separately labeled with PKH26 Red Fluorescent Cell Linker Kit

for General Cell Membrane Labeling (SigmaeAldrich), and

labeled exosomeswere added to the cell culturemedia at 1 and
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0.1% dilutions. HepG2 and HHSteC cells were cultured to 75%

confluence on 8-well chamber slides (EMD Millipore, Billerica,

MA), with slides for HHSteC cells coated with poly-L-lysine

(SigmaeAldrich). Cultured cells were washed with PBS and

0.5 mL of exosome media was added to each well. After 48 h of

incubation, slides were washed with PBS and fixed in 4%

paraformaldehyde solution for 10 min. Nuclei were counter

stained with ProLong Gold Antifade Reagent with 40,6-dia-
midino-2-phenylindole (Life Technologies, Grand Island, NY).

Slides were viewed on an Olympus BX61 upright bright field

and/or fluorescent imaging microscope (Olympus America,

Center Valley, PA).

2.5. Cell exposure

HepG2 and HHSteC cells were cultured to 75% confluence

before exosome exposure.Mediawere preparedwith exosomes

at 1 and 0.1% dilutions. Cultured cells were washed three times

with PBS, then 15 mL of exosome media was added to each

flask. HepG2 cells were exposed to adipocyte exosomes from

four obese donors and one lean donor; HHSteC cells were

exposed to exosomes from only one obese donor. Of the four

obese donors used in this experiment, twowere included in the

earlier experiments to characterize exosome miRNA content.

The other two donors were collected after the characterization

experimentswere completed. Exosomemedia from each donor

was applied to three flasks at each concentration, with three

flasks receiving exosome-free media as controls for the HepG2

cells. Five replicates were used for the HHSteC cell exposure.

Cells were incubated for 48 h, at, which time they were again

washed three timeswith PBS and cells were harvestedwith TRI

reagent (Molecular Research Center, Cincinnati, OH). RNA was

isolated according to standard trizol protocol and clean-upwas

performed with the RNeasy Mini Kit (Qiagen, Valencia, CA).

Final RNA concentration was assessed using NanoDrop 8000

(Thermo Fisher Scientific, Wilmington, DE).

2.6. Semiquantitative real-time polymerase chain
reaction

Complimentary DNAwas generated from 1000 ng of total RNA

using SuperScript II Reverse Transcriptase (Invitrogen, Grand

Island, NY). Polymerase chain reaction (PCR) was performed

using 5 mL of complimentary DNAmixture with iQ SYBR Green

Supermix (BioRad, Hercules, CA) on an ABI 7900HT Fast Real-

Time PCR system (Applied Biosystems, Carlsbad, CA) with SDS

2.4 software. Each sample was analyzed in at least duplicate.

Gene expression results were analyzed with analysis of vari-

ance and Student t-test, with P values <0.05 considered sig-

nificant. Results were analyzed separately at each exosome

dilution, as well as in pooled comparisons of all samples for

each exosome donor and compared with controls.
3. Results

3.1. Microscopy

After exposure to PKH26-labeled exosomes, red fluorescence

was seen in a perinuclear pattern in HepG2 and HHSteC cells

at all concentrations (Figs. 1 and 2, respectively). No red
fluorescence was present in cells exposed to control media

without exosomes.

3.2. HepG2 PCR

Analysis of gene expression changes at each exosome dose

revealed significant increases in tissue inhibitor of matrix

metalloproteinase-1 (TIMP-1) for cells exposed to obese donors

when the data are pooled (0.1%: 3.24� 1.54 P¼ 0.008, 1%: 3.18�
1.34, P¼ 0.003), aswell as significant increases for obese donor 4

at 0.1% (4.69� 0.003, P¼ 0.01), and for obese donors 1, 3, and 4 at

1%(2.64�1.14,P¼0.04; 4.78�0.66,P¼0.004;3.36�0.27,P¼0.01,

respectively). Plasminogen activator inhibitor-1 (PAI-1) expres-

sionwassignificantlydecreasedforobesedonor2at the1%dose

(0.32 � 0.06, P ¼ 0.03). There were no significant differences be-

tween doses for any mediator assessed, and fold changes ten-

ded to be similar between doses. Therefore, we then performed

analysis on pooled doses for each donor. This analysis demon-

strated significant changes in expression of TIMP-1, PAI-1, ma-

trix metalloproteinase-7 (MMP-7), and integrin anb-5 in cells

exposed to exosomes from obese patients but not in the single

lean donor (Table 1). Overall, we found increased expression of

TIMP-1 (3.21� 1.38, P¼ 0.026) and integrin anb-5 (1.44� 0.49, P¼
0.027) and decreased expression ofMMP-7 (0.66� 0.33, P¼ 0.03)

and PAI-1 (0.70 � 0.27, P ¼ 0.003). When results were stratified

into individual exosome donors, some, though not all, of the

results did reach statistical significance, likely due to a limited

numberof replicatesperexosomedonoror individualvariations

in the exosome contents. However, fold changeswere generally

in the same direction and trended toward significance. Com-

plete results are shown in Table 1.

In cells exposed to exosomes from our single lean donor,

there was a significant increase in TIMP-1 expression at the

0.1% exposure, though not at the 1% exposure or when doses

were pooled (0.1%: 7.51 � 1.05 P ¼ 0.002, 1%: 0.93 � 1.48, P ¼
0.29, pooled 5.32 � 3.87, P ¼ 0.19). There were no significant

changes in other mediators assessed.

3.3. Hepatic stellate cell PCR

Exposure to adipocyte exosomes from one obese donor induced

increased expression at both 0.1 and 1% exposures for TIMP-4

(0.1%: 1.43 � 0.47, P ¼ 0.02, 1%: 1.42 � 0.33, P ¼ 0.0009), integrin

anb-5 (0.1%: 1.69� 0.46, P¼ 0.0005, 1%: 1.29 � 0.26, P¼ 0.01), and

integrinanb-8 (0.1%:2.06�0.90,P¼0.013,1%:1.59�0.67,P¼0.02).

Expression of TIMP-1, Smad-3, and MMP-9 was increased at the

0.1%exposureonly (TIMP-1:2.07�0.72,P¼0.0007,Smad-3:1.27�
0.22,P¼0.02,MMP-9:2.13�0.39,P¼0.01), thoughtrendedtoward

significance at the 1% dose in TIMP-1 (1.51 � 0.57, P ¼ 0.09) and

Smad-3 (1.19�0.23,P¼0.06),withoutsignificantchanges inother

mediators assessed. Complete results are detailed in Table 2.
4. Discussion

4.1. Adipocyte exosomes integrate into HepG2 and
HHSteC cells

Our work is the first to demonstrate that adipocyte-derived

exosomes are capable of integrating into HepG2 cells, even

http://dx.doi.org/10.1016/j.jss.2014.06.050
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Fig. 1 e Immunofluorescence microscopy images of HepG2 cells after exposure to fluorescent-labeled exosomes.
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when diluted from full strength. Limited work has demon-

strated that tumor-derived exosomes are capable of inte-

grating into HepG2 cells, though these experiments were

performed using labeled exosomes at concentrations that are
Fig. 2 e Immunofluorescence microscopy images of HHSteC
likely orders ofmagnitude larger than those present in normal

circulation [28,29]. To our knowledge, we are also the first to

demonstrate that exosomes from any source integrate into

HHSteC cells. The ramifications of these findings are
cells after exposure to fluorescent-labeled exosomes.
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Table 1e Changes in expression of TGF-b pathwaymediators in HepG2 cells exposed to visceral adipocyte exosomes (Data
represent mean fold change ± standard deviation).

Mediator 0.1% dilution 1% dilution Both doses

Fold change P Fold change P Fold change P

TIMP-1

Obese 1 2.82 � 1.91 0.24 2.64 � 1.14 0.04 2.73 � 1.41 0.02

Obese 2 1.74 � 0.83 0.31 2.01 � 0.91 0.16 1.94 � 0.76 0.08

Obese 3 3.13 � 1.21 0.08 4.78 � 0.66 0.004 4.36 � 0.99 0.002

Obese 4 4.69 � 0.003 0.01 3.36 � 0.27 0.01 4.02 � 0.78 0.004

All obese 3.24 � 1.54 0.008 3.18 � 1.34 0.003 3.21 � 1.38 0.026

Lean 1 7.51 � 1.05 0.002 0.93 � 1.48 0.29 5.32 � 3.87 0.19

MMP-7

Obese 1 0.44 � 0.07 0.46 0.41 � 0.20 0.41 0.42 � 0.14 0.0008

Obese 2 0.84 � 0.003 0.6 0.51 � 0.39 0.69 0.51 � 0.39 0.40

Obese 3 0.56 � 0.34 0.62 1.07 � 0.23 0.85 0.95 � 0.16 0.62

Obese 4 0.61 � 0.28 0.51 0.97 � 0.31 0.74 0.85 � 0.31 0.41

All obese 0.50 � 0.10 0.31 0.74 � 0.38 0.70 0.66 � 0.33 0.03

Lean 1 0.96 � 0.23 0.55 1.17 � 0.78 0.94 1.07 � 0.23 0.80

PAI-1

Obese 1 0.50 � 0.10 0.06 1.08 � 0.26 0.80 0.79 � 0.36 0.24

Obese 2 0.32 � 0.06 0.03 0.32 � 0.06 0.03

Obese 3 0.50 � 0.18 0.17 0.67 � 0.13 0.15 0.60 � 0.16 0.08

Obese 4 0.82 � 0.14 0.38 0.76 � 0.22 0.29 0.79 � 0.17 0.30

All obese 0.62 � 0.20 0.09 0.74 � 0.32 0.18 0.70 � 0.27 0.003

Lean 1 1.00 � 0.05 0.99 1.11 � 0.19 0.66 1.06 � 0.13 0.80

Integrin anb-5

Obese 1 1.60 � 0.24 0.14 1.79 � 0.21 0.12 1.71 � 0.22 0.14

Obese 2 0.94 � 0.48 0.69 0.94 � 0.48 0.69

Obese 3 1.31 � 0.42 0.19 0.95 � 0.38 0.74 1.04 � 0.35 0.96

Obese 4 2.00 � 0.11 0.13 1.34 � 0.45 0.43 1.68 � 0.48 0.11

All obese 1.75 � 0.32 0.13 1.26 � 0.49 0.53 1.44 � 0.49 0.027

Lean 1 1.17 � 0.29 0.56 1.17 � 0.29 0.56

Bold values indicate statistical significance.
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potentially far-reaching, as we have shown that at physiologic

concentrations adipocyte exosomes integrate into two cell

types that are essential for the development of NAFLD. If the

exosome contents once internalized cause dysregulation in

these cell lines, a novel mechanism by which adipocytes may

mediate liver disease could be implied.
4.2. Obese adipocyte exosomes induce TGF-b pathway
dysregulation in HepG2 cells

Our results show that exposure to exosomes from VAT of

obese adolescent females causes significant increases in
Table 2 e Changes in expression of TGF-b pathway
mediators in HHSteC cells exposed to visceral adipocyte
exosomes (Data represent mean fold change ± standard
deviation).

Subject 0.1% dilution 1% dilution

Fold change P Fold change P

TIMP-1 2.07 � 0.72 0.0007 1.51 � 0.57 0.09

TIMP-4 1.43 � 0.47 0.02 1.42 � 0.33 0.0009

Smad-3 1.27 � 0.22 0.02 1.19 � 0.23 0.06

Integrin anb-5 1.69 � 0.46 0.0005 1.29 � 0.26 0.01

Integrin anb-8 2.06 � 0.90 0.013 1.59 � 0.67 0.02

MMP-9 2.13 � 0.39 0.01 1.32 � 0.62 0.38
expression of TIMP-1 and integrin anb-5, as well as significant

decreases in expression of MMP-7 and PAI-1. The gene

expression data are of particular interest in that they offer

direct evidence of dysfunctional ECM regulation caused by

adipocyte exosome delivery to HepG2 cells. TIMP-1 is a potent

inhibitor of MMP activity, and is elevated in liver fibrosis in

animal models and humans [30,31] while contrarily MMP-7

acts to degrade ECM. MMP-7 activity is increased in liver

fibrosis due to hepatitis C, as well as in fibrosing disorders of

other organ systems [30,32e36], which may be a physiologic

response to increased ECM deposition and is in contrast with

the data we present here. In a normal homeostatic state,

TIMP-1 and MMP-7 are in relative balance and maintain

appropriate ECM turnover. The increase of TIMP-1 expression

with concomitant decease in MMP-7 expression in our ex-

periments would result in ECM production that is relatively

unchecked by MMP-7 degradation, rendering a profibrotic

state in the cells [37]. Similar in function to TIMP-1, PAI-1 is a

serine protease inhibitor that inhibits ECM degradation by

blocking uPA and/or tPA-dependent activation of MMPs

[38e40]; abnormalities in PAI-1 activity have been implicated

in fibrosis of the skin, lung, kidney, heart, and liver [40]. De-

creases in PAI-1 activity in liver disease are associated with

mitigation of fibrosis [41]. The decrease in PAI-1 expression

seen in our experiments could be the result of natural feed-

backmechanisms in an attempt to restore equilibrium in ECM

turnover, although the overall balance between TIMP-1, PAI-1,

and MMP-7 protein production would ultimately determine

http://dx.doi.org/10.1016/j.jss.2014.06.050
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whether ECM degradation is increased or decreased in these

hepatic cells after exosome exposure.

The integrins are a group of cell adhesionmolecules, which

are capable of binding to and activating latent TGF-b com-

plexes [42e44]. Increased expression of these molecules has

been demonstrated in many fibrotic liver diseases [39,45e47],

though the role of integrin anb-5 specifically in the liver re-

mains unexplored. Given its activity to induce fibrosis via the

TGF-b pathway in other organ systems, it is likely that integrin

anb-5 contributes via a similar mechanism in liver disease

[42e45]. The increased expression seen after exosome expo-

sure from obese donors in the HepG2 cells further suggests a

role for the TGF-b pathway in the pathogenesis of NAFLD, and

is more evidenced that the adipocyte exosomes may cause

dysregulation in the liver. Although the fold changes induced

by the exosomes may seem small when compared with those

induced by toxins such as ethanol or lipopolysaccharide, the

small fold changes when extrapolated over the huge volume

of hepatocytes in the liver could potentially induce substantial

changes in overall protein expression.

4.3. Lean visceral adipocyte exosomes do not induce
TGF-b pathway dysregulation in HepG2 cells

Exposure to exosomes from visceral adipocytes of a lean fe-

male induced significant gene expression changes in TIMP-1

at a 0.1% dilution only. It is possible that adipocyte exo-

somes from lean patients may be able to induce hepatocyte

dysregulation, only to a lesser degree than those from obese

patients. It is also possible that the dramatic increase in TIMP-

1 expression seen at the 0.1% dilution (7.51 � 1.05, P ¼ 0.002) is

an anomaly related to the limited scope of this initial experi-

ment. Evaluation of visceral adipocyte exosomes from addi-

tional lean donors would be required to best assess whether

exosomes from visceral adipocytes from lean donors differ in

content from those from obese donors, or whether it is merely

a dose phenomenon where patients with obesity shed more

visceral adipocyte exosomes to the liver.

Taken together, these data offer additional support for the

hypothesis that VAT is the driving force behind the develop-

ment of NAFLD in obesity. The development of visceral

adiposity is associated with macrophage migration and

change to a more metabolically active phenotype of the adi-

pocytes [7,8,48]. As VAT becomes more active, we would

expect that to be reflected in the content of its secreted exo-

somes. As such, we would expect that exosomes from obese

patients would exert a greater effect on liver cells than those

from lean patients, which is consistent with our results.

4.4. Adipocyte exosomes induce TGF-b pathway
dysregulation in HHSteC cells

Exposure to exosomes from obese adipose tissue induced in-

creases in expression of TIMP-1, TIMP-4, Smad-3, integrin anb-

5, integrin anb-8, and MMP-9, all of which are intimately

involved in the development of fibrosis in liver disease and

show increased expression in human studies and experi-

mental models [38,42,45,46,49,50]. In contrast to the HepG2

experiments, the differences in gene expression are more

pronounced at the 0.1% dose than at the 1% dose in HHSteC
cells. This may be artifact related to the number of replicates

performed, or may also represent negative feedback mecha-

nisms that are triggered with increased exosome exposure.

Only two mediators showed similar expression changes in

both cell lines; TIMP-1 and integrin anb-5. The differences in

mediators expressed between the two cell types is likely

reflective of the complex interplay at work in the pathogenesis

of NAFLD, but obviously more donor exposures to the HSC

would be needed before drawing any significant conclusions.

We were unable to expose the HHSteC cells to more obese

donors due to the cost of working with these specialized cells.

Due to the limited amount of VAT from our lean donor, we

were also unable to expose stellate cells to lean exosomes.
5. Conclusions

In summary, the results of these experiments offer novel in-

sights into the pathogenesis of NAFLD and the potential role of

visceral adipocyte exosomes in other obesity-related diseases.

These data are limited by the relatively small number of rep-

licates per exposure, which was necessary due to the limited

supply of exosomes and the limited number of patient donors.

Research into exosome-mediated effects, both in vitro and

in vivo, remains extremely limited, and we are unsure of the

roles of ethnicity, age, or gender on the effect of exosome

exposure either in vitro or in vivo. Our future experiments will

focus on these factors, increasing replicates for the donors we

have, and increasing the number of lean and obese exosome

donors in general. It will also be important to assess protein

expression changes in the cells to ensure that the gene dys-

regulation translates into altered protein production. Our

continuing work will explore the contributions of BMI and

ethnicity to the exosome-mediated changes in TGF-b pathway

genes in hepatic cells in primary culture in addition to the

immortalized cell lines, with a hope to uncover the direct link

between obesity and NAFLD.
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