《地理与地理信息系统实验》教案

一、课程的性质和任务

该课程面向生态学专业的学生开设的实验课程,旨在加深学生对 GIS 的基本概念、GIS 的数据结构、GIS 数据输入存储编辑方法、GIS 空间分析方法等知识 点的认识;懂得如何利用 GIS 研究和解决地学问题的思路;熟练掌握 ArcGIS 软件的操作和应用。

二、课程的基本要求

《GIS 实验》是《地理信息系统》课程教学的重要组成部分,通过实验,使 学生加深对 GIS 基本理论的理解,提升学生的动手能力;实验目标是要加深学生 对 GIS 的基本概念、GIS 的数据结构、GIS 数据输入存储编辑方法、GIS 空间分 析方法等知识点的认识;懂得如何利用 GIS 研究和解决地学问题的思路;熟练掌 握 ArcGIS 软件的操作和应用。

三、适用专业

生态学

四、预修课程

普通生态学

- 五、学时(按章分)
- 六、教授内容

一、实验目的

- ▶ 了解空间数据是如何进行组织及基于"图层"进行显示的。
- ▶ 认识ArcMap图形用户界面。
- ▶ 通过浏览与空间实体关联的数据表,可以了解空间数据是 如何与其属性信息进行连接的。
- ▶ 掌握GIS两中基本查询操作,加深对其实现原理的理解。
- ▶ 学会使用ArcGis创建和编辑矢量数据

二、实验准备

▶ 软件准备:确保你的计算机中已经正确安装了ArcGIS
Desktop 10.0软件(ArcView, ArcEditor或ArcInfo)。

▶ 实验数据——中国省界、中国主要铁路和地级市驻地

三、实验步骤及方法

□ ARCGIS界面简介

第一步 启动ArcMap

第一步 启动ArcMap

主菜单

文件(F) 编辑(E) 视图(V) 书签(B) 插入(I) 选择(S) 地理处理(G) 自定义(C) 窗口(W) 帮助(H)

窗口标准工具 □≧■魯℁魯魯メッペー・「」」■■■■■♥♥、 地图浏览工具

按绘制顺序

按源列出

按可见性

按选择要素

内容列表				>
🗞 📮 📚 🛃 🗄				
可选(未选择任何要素)				
🚸 地级市驻地	M	0	{	
🤣 中国主要铁路	M	0		
📀 中国省界	M	0		

数据视图

布局视图

搜索界面

HENAN NORMAL UNIVERSITY

目录界面

文件(F) 编辑(E) 视图(V) 书签	B) 插入(I) 选择(S) 地理处理(G) 自定义(C) 窗口(W) 帮助(H)	
🗅 😅 🖶 🖨 I 🖗 📾 🗙 I 🛉	🤊 🤉 🔿 🗸 🕴 1 : 78, 816, 814		<mark>≫</mark> = x ? ₌	
: 6		🖗 20% 🕞 📄 🔛 💼 🖕		
🔍 🔍 🖑 🥝 💥 🖸 ሩ 🔶	🕅 - 🖸 📐 🖉 🖉 🔛 I	A 🛱 👷 💿 💽 💂		
的容列表 早	×			<u> </u>
🔄 📮 😂 📮 🗄				※11
日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日				
				=
				- 27
				-
				•
绘制(D) • 🖓 🚳 🗌 • A ·	・ 🖾 🛛 余体	▼ 10 ▼ B I <u>U</u> <u>A</u> ▼ ³	· • <u>#</u> • <u>•</u> • ₌	5
		68.721	81.082 十进制度	101

3 🚰 🖬 🖨 I 🤸 🗇 🛱		
च. 🔍 🖑 🔕 ; ; ; ; ; ; । क्रम्		
	查找范围:	
	名称: 显示类型: 数据集和图层 ▼ 取消	

空间查询

空间查询

属性查询

Q 无标题 - ArcMap - ArcInfo	
文件(F) 編辑(E) 视图(V) 书签(B) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	插入(I) 选择(S) 地理处理(G) 自定义(C) 窗口(W) 帮助(H) ○ ◆ + 1:96,805,036 ↓ ↓ □ □ □ □ □ □ □ ↓ ? • • • ? • • • • • • • • • • • • • •
 ◎ ◎ ◎ ● 	
:绘制(D) ▾ ▶ ○ □ ▾ A ▾ ;	(0 / 34 已选择) - 中国省界 □□□ ② □ < □

属性查询

T A

□ 使用ARCGIS浏览数据

属性查询

F	ID	Shape *	NAME	Γ	4
	0	đ	馬龙江		
_	1	<u>ت</u>	新疆	1	
	3	<u>ھ</u> ش	宁夏	+	
*	闪炽	ϵ(F)	1. S.	7	
Đ	缩放	女 <u>至(</u> Z)		Ľ	
Sul	平利	8至(A)		ł	111
	识别	۱ <mark>(T)</mark>		ſ	
	选择	≩/取消选择(S))	Ŀ	
0	打开	下附件管理器		F	
Ð	缩应	(O)	į	Ì	
3	清晰	新远项(L)		ł	_
	复制	小所选项(C)		F	
×	删除	新选项(D)		t	
5	缩放	女 百克是示明	ī(M)	┣	
1	取消	选择高亮显示	辰项(E)	Ľ	
嘞	重新	选择高亮显示	丙项(R)	ł	-
×	删除	输完显示项(T)	ł	
• •				1	

μ x

x

.

.

۲

۲

属性杳询	按属性选择 28 23	
	输入一个 WHERE 子句以在表窗口中选择记录。 方法: 创建新选择内容 ▼	属性字段
	"FID" "NAME" "Area"	
查询符号	$= \langle \rangle \ \text{Like}(K)$ $\rangle = \text{And}(N)$ $\langle \langle \langle z \rangle \text{Or(B)} \rangle$	字段值显示 窗口
查询公式	SELECT * FROM 中国省界 WHERE:	
GIS Designing our future	▼ 清除(E) 验证(Y) 帮助(H) 加载(D) 保存(V) 应用 关闭	河南師範大學 HENAN NORMAL UNIVERSITY

TΥ

77.148 32.717 十进制度

2.创建一个线图层,并命名这 个图层为河南省行政区划

称:	New_Shapefile		
素类型:	点		-
空间参考			
描述:			
未知坐标系			~
4		4	*
✓ 显示详细信	.息		*
 ■ 显示详细信 ■ 坐标将包含 ■ 坐标将包含 	息 M值。用于存储路径数 Z值。用于存储 3D 数扫	▶ [编辑. 居。	

3.加载河南 省行政区划 图

4.调出编辑

器工具条

Q 无标题 - ArcMap - ArcInfo 文件(F) 视图(V) 书签(B) 插入(I) 选择(S) 地理处理(G) 自定义(C) 窗口(W) 帮助(H) - 🔛 🗐 🧊 🗊 🚳 🖸 🕍 📢 📮 🗋 🚰 🔚 🚔 🐁 🏥 🚔 🗙 🔊 (*) 🔶 • 1월 1월 1월 1월 1월 1월 1월 20× 🔍 🚽 🖻 🗃 👬 🚂 🖕 🔍 🔍 🕅 🔕 💥 😭 💠 🕔 🖉 💷 🔛 🗛 🖏 🐻 🖳 编辑器(R)・トトレノアロ・米|区比中メウ|目因|留。 内容列表 分 开始编辑(T) 😓 🚨 😂 🚨 🗐 "/ 停止编辑(P) 5.点击编辑 🗆 🥌 图层 保存编辑内容(S □ 🔽 河南省行政区划 移动(M)... 分割(L)... 器-开始编辑 间南省行政区划图.ip -1 构造点(P).. RGB ペテ 平行复制(Y)... 红色: Band 1 绿色: Band 2 @ 缓冲(B)... 蓝色: Band_3 联合(い)... 裁剪(C)... ■___ 验证要素(V 捕捉 更多编辑T具(E) 编辑窗口 选项(O). 绘制(D) • ▶ ① □ • A • 🖾 🖉 宋体 • 10 • B I U A • 🗞 • 🧖 • • • 开始编辑会话 -1155.387 299.285 十进制度 22:18 周日 ጛ 中 🌙 °, 📾 🚢 🔑 🖸 🕐 ᆛ 3 0 🔁 🎼 📀 2015-10-1

HENAN NORMAL UNIVERSITY

要记得随时保存编辑内容!!!

具

7

Designing

□ 使用ARCGIS创建和编辑数据

▶ ARCGIS加载数据和浏览数据

- ▶ ARCGIS空间查询和属性查询的方法
- ▶ 完成河南省行政区划图的数字化

一、实验目的

使学生了解符号化、注记标注、格网绘制及地图整 饰的意义,掌握基本的符号化方法、自动标注操作 及相关地图的整饰和输出的操作。对数字地图有初 步的认识。

二、实验数据

上海市部分地区矢量地图,其中包含: (1) 点图层: 区县政府(QXZF.shp),市政府 (SZF.shp);

(2) 线图层: 地铁线 (DTX.shp), 区县界限

(QXJX.shp),道路(DL.shp);

(3) 面图层: 区县界面 (QXJM.shp), 双线河 (SXH.shp)

数据存放在.....\Chp5\Ex1中

1 数据符号化

1.1 双击.....\Chp5\Ex1\shanghai.mxd地图文档,打开ArcMap

1.2 根据排序规则对图层排序

组织 🔹 (包 打开 🔹	打印 新建文件夹		•	0
☆ 收藏夹	名称	修改日期	类型	大
下载	QXZF.SHP	2005/8/7 13:17	SHP 文件	
「「「」「」「」」	QXZF.shp.USER-20080917GV.6756.18	2015/10/16 14:49	LOCK 文件	
	QXZF.SHX	2005/8/7 13:17	SHX 文件	
■ 地位の凹凹立	👰 shanghai 🥿	2011/12/1 17:24	ESRI ArcMap Do	
	SXH.DBF	2005/8/2 21:57	DBF 文件	
肩 库	🔒 SXH	2005/8/2 21:40	媒体文件(.mid)	
₩ 视频	SXH.MIF	2005/8/2 21:40	MIF 文件	
■ 图片	SXH.sbn	2005/8/9 21:49	SBN 文件	
2 文档	SXH.sbx	2005/8/9 21:49	SBX 文件	
→ 音乐	SXH.SHP	2005/8/2 21:57	SHP 文件	
	SXH.shp.USER-20080917GV.6756.183	2015/10/16 14:49	LOCK 文件	
🖳 计算机	SXH.SHX	2005/8/2 21:57	SHX 文件	
AL 未地球舟 (C-)	٠ [m			÷.
Shanghai ESRI ArcMap D	修改日期: 2011/12/1 17:24 创资 ocument 大小: 431 KB	建日期: 2015/10/16 1	4:45	

HENAN NORMAL UNIVERSITY

1 数据符号化

1.3 点线面符号的设置

Designing

2 地图标注

常规 🏻 🛙	原 🗄	选择	显示	符号系统	字段	定义查询	标注	连接和关联 日	间 нти	NL 弹出窗口	
🗌 标注止	北图层中的	的要素	(L)								
方法(M):		以村	目同方式	为所有要素加	标注。			•]		_	
将使用	指定的选	项为所	有要素力	呐注。			/	选择标注	字段		
- \} *	⇒汝史										
×4-5 标注字	字符中 字段(F):		NAME				8	▼ 表达式(E)]		
文本征	符号										
		AaBb	YvZz		0	未体 □ _	2 8	▼ 8 ▼		设置字	体显示样式
						• B	Ι	Ŭ (お号(S)]	
一其他這	选项						预定义的	9标注样式			
	- 加五	禺性(P)	l		50 1 0(N))		标注件式(印			
			_								
				设置好	后点	π Ν					
				确定	È						
								确定	取消	应用(A)	
										20 5	4551 1

HENAN NORMAL UNIVERSITY

- 三、实验步骤
- 3 设置格网

esvi

	 ▶ ▶ ▶ ▶ ▶ ▶ ♥ ♥	 添加数据(T) 新建園屋组(G) 新建園屋組(G) 新建鹿園園屋 复制(C) 粘贴園屋(P) 移除(R) 打开所有園屋(Y) 关闭所有園屋(L) 选择所有園屋(L) 选择所有園屋(Z) 折叠所有園屋 参考比例(S) 高级绘制选项(O) 标记(B) 样 标注转换为注记(N) 榕要素转换为園形(F) 榕園形转换为慶素(V) 激活(A) 	
		/#=(I(1)	

注记组	范围	围指示器	框架	大小和位置	
常规	数据框	坐标系	照明度	格网 要素缓存	
只服112师,同代	四中的刻坊	性工运利参考1	aµ∞] ∘	新建格网(N) 移除格网(R) 样式(S) 属性(R)	点这里! 点
				属性(R)	里!
8				转换入图版	

	线样式: ▼长轴主刻度
Contraction of the second	
A Part	每个长轴主刻度的刻度数: 0 🚔
15	标注
E Contraction	文本样式:

ぞ 23 经纬网边框 ● 在经纬网边缘放置简单边框 ● 在经纬网边缘放置整饰边框
▶ 四廓线 ● 在格网外部放置边框
经纬网属性 ◎ 存储为可编辑的静态图形 ◎ 存储为随数据框变化而更新的固定格网
<上一步(B) 完成(B) 取消 河南征花大学

	数据框属性	-		8 23	J
多了个	注记组 常规 對	范围指示器 (据框 坐标系	▲ 框架 照明度 格区	大小和位置 图 要素缓存	
"经纬网"	只能在布局视图 [。] 经结网	中的数据框上绘制参考		新建格网(N)	
				移脉陷网(R) 样式(S)	
				转换为图形	
Designing our future					可南印耗大学
2531					

4 设置图例

显示了软件中 的所有数据	图例向导 选择要包括在图例中的图层 地图图层: 又县政府 市政府 	 图例项 	 ■ ■
	设置图例中的列数: 预览		
GIS Designing our future		<上一步(B) 下一步(M) >	取消 ううない あんよう しんしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう

图例标题字体属性	标题对齐方式	
颜色:	可在此处设置标题 与图例其全部分的	
大小: 15 →	对家方式。	
· 字体: ② 采体 B Z <u>U</u>		
和齿		

标题和图例项:	8.57	(磅)	்ற குட்	标题
网络运		4 *	图例項1	- 图例項 3
图例坝:	5.36	(磅)	图例项名称	图例项名称
列:	5.36	(磅)	📕 标注 備述	—— 标注 借述
标题和类:	5.36	(磅)	标注 備述 标注 備述	—— 标注 備述 —— 标注 備述
标注和描述:	5.36	(磅)	图例項 2	图例項 4
面(垂直):	5.36	(磅)	标注 備述	📃 标注 備述
面和标注:	5.36	(磅)		

实验二 空间数据的可视化表达

实验二 空间数据的可视化表达

保存在(I):	퉬 ArcGIS 👻 🗸	3 🤣 🛤 🔛 🔂	
Ca	名称	修改日期	
访问的位置	🍌 AddIns] Default.gdb	2015/9/24 16:42 2 2015/10/16 14:49 2	
 桌面			
库 库			
MAN 计算机			
図 路			
	<		
	文件名(M): shanghai 保存类型(T): EMF	 ✔ 保存(S) ▼ 取消 	
±项(2)			
· 序率 (R): 〕出图像质重	300 💽 dpi 建(重采样率)		
t速	常规 最佳 Djibouti	- In las	-:)

一、实验背景

如何找到环境好、购物方便、小孩上学方便的居住 区地段是购房者最关心的问题,因此购房者就需要 从总体上对商品房的信息进行研究分析,选择最适 宜的购房地段

二、实验目的

学会使用缓冲区分析和叠置分析解决实际问题

三、实验数据

- (1) 城市市区交通网络图(network.shp);
- (2) 商业中心分布图 (marketplace.shp);
- (3) 名牌高中分布图(school.shp);
- (4) 名胜古迹分布图 (famous place.shp)

数据存放在……\Chp7\Ex1中

四、实验步骤

1 主干道缓冲区建立

(件(F) 编辑(E) 音看(V) T				
组织 ▼ 包含到库中 ▼	共享 ▼ 刻录 新建文件夹			
☆ 收藏夹	▲ 名称 [▲]	修改日期	类型	大小
📃 桌面	Result	2015-8-8 10:56	文件夹	
🗐 最近访问的位置	💽 city.mxd 🚤	2005-12-28 11:35	ArcGIS ArcMap	479
▶ 下载	🖻 famous place dbf	2005-7-22 13:12	DBF 文件	
	📄 famous place.sbn	2005-7-22 13:12	SBN 文件	
日本	= 📄 famous place.sbx	2005-7-22 13:12	SBX 文件	3
	amous place.shp	2005-7-22 13:12	SHP 文件	
	famous place.shx	2005-7-22 13:12	SHX 文件	
	🖻 Marketplace.dbf	2005-7-23 10:57	DBF 文件	ं
	Marketplace.sbn	2005-7-23 10:57	SBN 文件	
■ 文档	Marketplace.sbx	2005-7-23 10:57	SBX 文件	
🔒 迅雷下载	Marketplace.shp	2005-7-23 10:57	SHP 文件	
👌 音乐	Marketplace.shx	2005-7-23 10:57	SHX 文件	
	🖻 network.dbf	2005-7-22 13:12	DBF 文件	110
🜏 家庭组	network.sbn	2005-7-22 13:12	SBN 文件	10
	network.sbx	2005-7-22 13:12	SBX 文件	1
	network shn	2005-7-22 13:12	SHD文件	50

HENAN NURMAL UNIVERSITY

四、实验步骤

1主干道缓冲区建立

1.1 双击.....\Chp7\Ex1\city.mxd地图文档,打开ArcMap

1.2 选择城市主干道

🚎 🕐 🖡 🐟 🔹 🕲 📥 🐨 🐨 🖬

HENAN NORMAL UNIVERSITY

12:54 周日

*

ERAI

文件(F) 编辑(E) 视图(V) 书签(E) 插入(I) 选择(S) 地理处理(G) 自定义(C) 窗口(W) 帮助(H)	
10 🔁 🖬 🖨 % 🗊 🛍 × *	🗠 🔿 🗸 1:64, 793 🛛 👻 🔛 📰 🧊 🖾 🔯 🔁 🦻	
	100% 🖵 📄 📾 🚂 🖕	
🖲 🖯 🖑 🥥 💥 🖸 🖛 🔶 I	🛛 - 🖸 👠 🕘 🖉 🗊 🚟 🏭 編編器(R) - ト 📐 ノ ご 毎 - 米 115 116 中 × つ 🎚	12
内容列表 早:	· 表 · · · · · · · · · · · · · · · · · ·	
🗽 🕘 😞 🖳 🖂		
🗉 🥌 Layers	network ×	
🖃 🗹 famous place		
•		-
🖃 🗹 Marketplace		_
•		5
🖻 🗹 network		
1 <u>2-0</u> 3		
🖃 🗹 school		
٠	.641 .641 500	
		11
	.581 .581 .500	
	(270 / 631 已洗择)	
		1

Ballooren

四、实验步骤

1主干道缓冲区建立

1.3 建立主干道缓冲区

类别(G):	命令	ወ):	
地图服务发布 动画 动态文本 多维工具 分布式地理数据库(Geodatat 分析工具 服务编辑 工具	*** ()	样式引用(R) 样式管理器(S) 添加 XY 数据(A) 绘图工具条	-
各种各样的	ŀ	缓冲向导(B)	
工具洗顶板 几何网络分析 空间统计工具 較次编辑会公	\$	编辑器工具条(I) 选择点	4 m

河南印花大学

HENAN NORMAL UNIVERSITY

四、实验步骤

2 其他缓冲区建立

2.1 以同样的方法建立商业中心、名牌高中和名胜古迹的缓冲区

商业中心缓冲区

如何创建缓冲区? ◎ 以指定的距离(S)	200	* *		
有 其工业 白房树 的 55 南 (A)		The second secon	╱ 这里有点>	下
		• 1 *	样!!	
○作为多缓冲区圆环 (B)	3			
圆环之间的距离(0):	1	* *		
缓冲距离				
距离单位为(0): 米		•		

四、实验步骤

3叠置分析

3.1 进行叠置分析,将满足上述四个要求的区域求出

,输入要素 		-	相交
要素	等级		计具输入要素的几间交集。 所有图层和/或要素类中相 叠置的要素或要素的各部分 将被写入到输出要素类。
 ✓ · · ·	 *		
		*	FEATURE

输入要素		*	输出要素类
缓冲_相交		- 🔁	
擦除要素			该要素类只包含与"擦除
缓冲_network		🗔 🔁	索"不重叠的"输入要 妻"。
输出要素类			1. MR (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
E:\gis实验\缓冲_擦除.shp			
XY 容差 (可选)			
	*	•	
		_	

4.1 为了使结果更有说服力,更加直观,对整个市区进行分等 定级

GIS Design

文件(F) 编辑(E) 视图(V)	书签(B)	插入(I) 选择(S) 地理处理	!(G)	自定义(C) 窗口(W)	帮助(H)		
	K 52	(* 💎 + 1:64, 793		- 🔛 🖽 🕲 🕷	9 🗁 Po 🗚 🖻		
		100% 🚽 📑 🖬 👬 🕼 💂					
🔍 🔍 🖑 🥥 👯 💱 🖛		- 🖾 💺 🚺 🖉 📮 🚆	编辑	器(R) - 🕨 🛌 📝 🖉	(4・※ 🖾 🏗 中 🗡 🥥 🔳) \Lambda 📝 ŀ	1 -
内容列表	Ψ×	表	1	开始编辑(T)	创建要素	ų ×	3
🗞 📮 🧇 📮 🗉		🗄 • 🖶 • 📲 🔂 🗹 🛃	1	停止编辑(P)	ि • • • • • • • • • • • • • • • • • • •	• 🧕 🔊	国
•	*	缓冲_famous_place		保存编辑内容(S)	缓冲_famous_place		
🗆 🗌 缓冲_擦除	2	Shape * Id 缓冲	f	移动(M)	/////////////////////////////////////		
		<u>面</u> 0 500 面 0 500	-	分割(L)			愛対
				构造点(P)			
□ ☑ 缓冲_famous_place		<u>面</u> 0 500	14	平行复制(Y)			
		<u>面 0 500</u> ▶ 面 0 500 1		合并(G)			
🗉 🗌 school	E		0	缓冲(B)	记得保存哦!	!!	
•				联合(U)			
li ∐ 渡/Ψ_school				裁剪(C)			
□ □ Marketplace			1	验证要素(V)			
•		<		捕捉			
🗉 🗌 缓冲_Marketplace		H 4 7 F H		更多编辑工具(E) 🕨		\$ []	l I
		🧪 (0 / 7 已选择)		编辑窗口	11 构造工具	Ê	
□ ∐ 缓冲_network	-	缓冲_famous_place		选项(O)	选择模板。	-	
: 绘制(D) • 🖡 💮 🔢 🔲 •	A - 🖄	🖉 Arial	- 1	0 - B I U A	- <u>A</u> - <u>A</u> - <u>-</u>		
停止编辑 会话					3483.31 6683.81 米		1.4

4 分等定级

4.2 以同样的方法对其他缓冲区添加字段和赋值

4.3 对四个缓冲区进行叠置分析

字段计算器			8 23
解析程序 Ø VB 脚本	🔊 Python	类型:	功能(U):
FID_缓冲_n Id_12 缓冲距离_1 network FID_缓冲_s Id_12_13 缓冲距离_2 school class	E	 ● 数字 ○ 字符串(T) ○ 日期(D) 	Abs () Atn () Cos () Exp () Fix () Int () Log () Sin () Sqr () Tan ()
□ 显示代码块 class = [famous] + [market	plac] + [network] + [s	:chool]	
			确定 取消

一、实验背景

由于空间数据(包括地形图与DEM)都是分幅存储 的,某一特定研究区域常常跨越不同图幅。当要获 取由特定边界的研究区域时,就要对数据进行裁切、 拼接、提取等操作,有时还要进行相应的投影变换。

二、实验目的

通过练习,掌握数据提取、裁切、拼接及投影变换 的方法。

三、实验数据

(1) 矢量数据(Vector.shp): 白水县的行政范围; (2) DEM数据(DEM 1和DEM 2); 数据存放在.....\Chp4\Ex1中

1 白水县行政范围的提取

俞入要素	表达式 (可选) 🔶
rector 🗾 🔁	51 101.05 51 001
	用于选择要素子集的 SQL
B:\gis实验\Vector_Select.shp	表达式。表达式的诸法会内 数据源的不同而稍有不同。
長达式(可选)	例如,如果要查询文件或
SQL	ArcSDE 地理数据库、
	shapefile 或 coverage,需 终实段发展观乱是任权。
	何子权有用双丁与推起。
	"MY_FIELD"
単击这里	=
	如果要查询个人地理数据 底、乘将文段田方托号托
	ー 起:
	100 A 100
	[MY_FIELD]
	在 Puthon 窗口中,将
	{where clause} 用括号括起
	可以确保正确地解释空格
	(参数之间的分隔符)。
	▲ 有关 SQI 语法及其在不同
-	数据源之间的差别的详细消 🚽
确定 取消 环境… <<隐藏帮助	工具帮助

查询构建器 · · · · · · · · · · · · · · · · · · ·	8 X
AREA PERIMETER CNTY_ CNTY_ID CNTY_CODE	* III *
= <> Like(K) > >= And(N) < <= Or(R) () Not(T)	
	-
确定	取消

四、实验步骤

2 DEM数据拼接

输入栅格			— , 📄	镶嵌运算符 (可选)	Â
♦ dem1 ♦ dem2				The method used to mosaic overlapping areas.	
				 FIRST—The output cell value of the overlapping areas will be the value from the first raster dataset mosaicked into that location 	E
俞出位置				LAST—The output	
E:\gis实验				cell value of the	
具有扩展名的栅格数据集名称				will be the value	
result				from the last raster	
删格数据的空间参考(可选)				dataset mosaicked	
				This is the default	
影素类型(可选) 16 PTT 1997-0772P				BLEND The output	
TO_DII_UNSIGNED			•	cell value of the	
\$\$76747-CP1727				overlapping areas	
皮段数				will be a horizontally	
			1 -	weighted calculation	-
	确定 取消	环境	<< 隐藏帮助	工具帮助	

3利用白水县范围对DEM裁切

輸入栅格				输出栅格
result			- E	
俞入栅格数据或要素掩膜数据				The output raster
Vector_Select			- 🔁	containing the cell values
俞出栅格				raster.
	确定 取消	环境…] << 隐藏帮助	工具帮助
	确定	环境…	」 << 隐藏帮助	「日本町」

4 白水县DEM投影变换

輸入栅格				_	输出坐标系
extractdem			_		
諭入坐标系 (可选)					投影输入栅格的坐标系。默
GCS_Krasovsky_1940					认值将基于"制工坐你系" 环境设罟讲行设定。
輸出栅格数据集					STRAEZ TRAES
E:\gis实验\project_dem			6		
諭出坐标系					
Xian_1980_GK_Zone_19					
地理(坐标)变换(可选)					
			(
重采样技术(可选)					
NEAREST 绘出梅二十小、同选)					
制山家兀八小(叶远) 94 0021020062040				-	*
		1714			
	「明正」	圿 現…	<< 隐藏帮助		
				-	N/1 /2 1/2 1/2

- THAK	Z 坐标系			
名称:	Xian_1980_G	K_Zone_19		
详细信息:				
Projectio Folso Fo	on: Gauss_Krug	ger no occoro		*
False_Non	thing: 0.0000)00		1.02
Scale_Fa	riaian: 111. ctor: 1.000000)		
Latitude Linear U	_Of_Origin: O. nit: Meter (1.	000000		E
Geograph	ia Coordinata	Stration: GCS V	ion 1980	
Angular 1	Jnit: Degree	(0.01745329251	9943299)	
Prime Men Datum: D	ridian: Greenw Xian 1980	vich (0.000000	000000000000000000000000000000000000000	
Sphero	id: Xian_1980			-
选择(S)	选择预定	E义的坐标系。		
[导入(I)	→ 从现有均素类、植和 M 属	b理数据集(例如 册格数据)导入坐 性域∘	,要素数据集、 标系以及 X/Y、	要 Z
新建 @	D 🔹 创建新4	Le标系。		
修改(0)	编辑当前	前所选坐标系的。	禹性 。	
	:) 将坐标系	彩设置为"未知"	' 。	
清除(C				
清除 (C 另存为 (V) 将坐标系	条保存到文件。		

刘览坐标系	And Annual Street, Name			23	
查找范围:	🐻 坐标系	- 🕹 🟠		- 🖴 🛍 🕻	9
Geograp	hic Coordinate Systems				-
Projected	Coordinate Systems				
Vertical C	oordinate Systems				
名称:				添加	
显示类型:			•	取消	וו
	(1

实验四 矢量数据的空间分析(下)

刘览坐标系	23
查找范围:	🔁 Projected Coordinate Systems 🔹 🏠 🏠 🗔 🛛 🖶 🔹 🕻
ARC (equ Continen County S Gauss Kr National Polar State Pla State Sys UTM	al arc-second) 🖆 World tal 🖆 World (Sphere-based) ystems uger Grids ne tems
名称:	Gauss Kruger 添加
显示类型:	坐标系

实验四 矢量数据的空间分析(下)

暨找范围: □Asia	Gauss Kruger	- 🔁 🙆		· 🖴	8
Beijing 1	954				
Pulkovo	1942 1995				
🔁 Xian 198	0				
🖹 Xian 198	0				
X ian 198	0				
🔁 Xian 198 名称:	Xian 1980				添加

实验四 矢量数据的空间分析(下)

浏览坐标系	transformer, Same Rowsell		23
查找范围:	🔁 Xian 1980	- 🕹 🏠 🗔 🎛 🕇 🖆 🖆	1
Xian 198	0 GK CM 123E.prj	💮 Xian 1980 GK Zone 14.prj	
() Xian 1980	0 GK CM 129E.prj	💮 Xian 1980 GK Zone 15.prj	
() Xian 1980	0 GK CM 135E.prj	💮 Xian 1980 GK Zone 16.prj	
() Xian 1980	O GK CM 75E.prj	💮 Xian 1980 GK Zone 17.prj	
() Xian 1980	O GK CM 81E.prj	💮 Xian 1980 GK Zone 18.prj	
() Xian 1980	0 GK CM 87E.prj	💮 Xian 1980 GK Zone 19.prj	
() Xian 1980	0 GK CM 93E.prj	💮 Xian 1980 GK Zone 20.prj	
() Xian 1980	O GK CM 99E.prj	💮 Xian 1980 GK Zone 21.prj	
() Xian 198	0 GK Zone 13.prj	💮 Xian 1980 GK Zone 22.prj	
•		III	۰,
名称:	Xian 1980 GK Zone 19.prj	添加	
显示类型:	坐标系	▼	

一、实验背景

合理的学校空间位置布局,有利于学生的上课与生活。学校的选址问题需要考虑地理位置、学生娱乐场所配套、与现有学校的距离间隔等因素,从总体上把握这些因素能够确定出适宜性比较好的学校选址区

二、实验目的

通过练习,熟悉ARCGIS栅格数据距离制图、成本距 离加权、数据重分类、多层面合并等空间分析功能; 熟练掌握利用ARCGIS空间分析功能,分析和结果类 似学校选址的实际应用问题。

三、实验数据

- (1) landuse (土地利用图)
- (2) dem (地面高程图)
- (3) rec_sites (娱乐场所分布图)
- (4) school (现有学校分布图)

数据存放在……\Chp8\Ex1中

四、实验要求

(1)新学校选址需注意如下几点:地势平坦;结合现有土地利用类型考虑,成本不高的区域;与现有娱乐设施相配套;避开现有学校,合理分布

(2) 各数据层权重比:距离娱乐设施占0.5,距离学校占

0.25, 土地利用类型和地势位置各占0.125

(3) 熟练运用如下功能: 坡度计算、直线距离制图、重分 类和栅格计算器

五、实验步骤

1准备数据

1.1 工作环境设置

☆ 工作空间 当前工作空间			Â	范围
C:\Users\zhu\Documents\ArcGIS\Defa	ult.gdb			Specify the extent of the
临时工作空间				study area. You can think
E:\gis实验				of this setting as a
> 輸出坐标系			_	input features and rasters
☆ 处理范围			E	for processing. Any feature
范围				or raster that passes through the rectangle will
与图层 landuse 相同		•		be processed and written
	<u> </u>		_	to output. Note that the
÷	4068719.266928	+		select features not clip
610915.074234		612485. 455975		them. The extent of the
	<u>ہ</u>			output dataset will typically
	4067646.601804			Extent setting to account
捕捉栅格			_	for features that pass
1		<u> </u>		through the extent
¥ XY 分辨率及容差				rectangle.
×m.@c				 Default - No extent
× 7 H				set. The extent will
* 4 医			-	be based on the
	72-	Travsk and a rata		
	明正		歐部助	
				YO 3 30 41

- 五、实验步骤
- 1准备数据
 - 1.2 坡度分析

输入栅格					输入栅格	*
l ^{aem} 输出栅格				⊥ 🖻	The input surface raster	
E:\gis实验\Slope_dem1						
输出测量单位(可选) DECREE						
z 因子(可选)				· ·		
				1		
				*		-
	确定	取消	环境	<<隐藏帮助	工具帮助	
					NØ 3 3	1 42

五、实验步骤

1准备数据

1.3 娱乐场所距离分析

入栅格数据或要素源数据			^ ^	输入栅格数据或要素 🤺
ec_sites			- 6	源数据
〕出距离栅格数据				
l:\gis实验\EucDist_rec_2			6	The input source locations.
大距离 (可选)				
				This is a raster or feature
(出像元大小 (可选)				cells or locations to which
. 29066049382269				the Euclidean distance for
)出方向栅格数据(可选)				every output cell location is
				calculated.
				For motors, the input type
				can be integer or floating
				point.
				a second and a second a
			Ŧ	*
	确定	取消 环境	<<隐藏帮助	工具帮助

五、实验步骤

1准备数据

1.4 学校距离分析

五、实验步骤

2 重分类数据

2.1 重分类坡度数据

输入栅格			-	输入栅格
Slope_dem1			- 2	
重分类字段				The input raster to be
Value				reclassified.
重分类		1	出土之田	
旧值	新值 人 一一		甲击赵里	
0196377	0 分类	ŧ		
.196377392754	1			
.392754589132	2	-		
.589132785509	3			
.785509981886	4 添加	係目		
.981886 - 1.178263	5			
1.178263 - 1.374641	6 删除	条目		
1.374641 - 1.571018	7			
加载 保存	对新值取反 精調	ŧ		
輸出栅格			_	
E:\gis实验\Reclass_Slop2			A	
□将缺失值更改为 NoData (可选)		-	*
	确 定 取消	环境	<<隐藏帮助	工具帮助

212 Designing

HENAN NORMAL UNIVERSITY

五、实验步骤

2 重分类数据

2.2 重分类娱乐场所距离图

五、实验步骤

2 重分类数据

2.3 重分类学校距离图

EucDist_schol				
重分类字段				用于定义值的重分类方式的
Value			-	重映射表。
重分类				
旧值	新值	A		 旧值 - 输入栅格中像 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
0 - 74.090649	1	分类		的设置句括单个值、
74.090649 - 148.181299	2			值范围、字符串或
148.181299 - 222.271948	3	NE		NoData。可通过使
222.271948 - 296.362598	4			田分子()換单个值
296.362598 - 370.453247	5	添加条目		分开来指定单个值的
370.453247 - 444.543896	6			列表。值范围可通讨
444.543896 - 518.634546	7	删除条目		以连宝符 (-) 作为范
518.634546 - 592.725195	8	• <u> </u>		国分隔符的形式来指
加载 保存	对新值取反	精度		定。 ● 新值 - 分配给单个值
俞出栅格				或值范围的新值。
E:\gis实验\Reclass_EucD2			PÅ.	• 分类 打开用于指
☐ 将缺失值更改为 №oData (同	可选)			定分类方法的对话 框。选项包括"手 动"、"相等间 隔"、"定义的间 隔"、"分位数"、 "自然间断点分级法 (Jenks)"和"标准 ᆍ
	确定	取消 环境…	<<隐藏帮助	工具帮助

五、实验步骤

2 重分类数据

2.4 重分类土地利用图

- 五、实验步骤
- 3 栅格计算

实验五 栅格数据的空间分析(上)

BI层和变量 ◆ Reclass_EucD2 ◆ Reclass_EucD1 ◆ Reclass_Slop2 ◆ EucDist_scho1 ◆ EucDist_rec_1 ◆ Slope_dem1 ◆ landuse 創出栅格 B: \gis实验\rastercalc1	7 8 4 5 1 2 0	9	/) == *) > -) < +) (= & >= <= ^) ~	条件分析 — Con Pick SetNull 数学 — Abs Exp	• • •	在类似计算器的界面中,使 用 Python 语法构建和执行 单个地图代数表达式。
	 		取消	[随 <<	隐藏帮助	工具帮助

实验五 栅格数据的空间分析(上)

一、实验背景

各地区经济协调发展是保证国民经济健康持续稳定 增长的关键。GDP是反映各地区经济发展状况的重要 指标。科学准确分析各地区GDP空间分布特征,对制 定有效措施,指导经济协调发展具有重要参考价值。

二、实验目的

ARCGIS中提供了三种空间插值方法,每种插值方法 在原理和应用上都大不相同,在此通过具体实例练 习如何利用反距离权重内插方法和样条函数内插方 法进行GDP空间分布特征的分析。

三、实验步骤

- 1 反距离权重插值
 - 1.1 打开地图文档

三、实验步骤

- 1 反距离权重插值
 - 1.2 工作环境设置

三、实验步骤

- 1 反距离权重插值
 - 1.3 反距离权重插值

在IDW插值之前,我们可以事 •加权函数: 🖉 先获取一个离散点子集,用 $W_i = \frac{h_i^{P}}{\sum_{i=1}^n h_i^{P}}$ 于计算插值的权重; p 是一个任意正实数, 诵常, p=2;↓ 原因1: 离散点距离插值点 hi 是离散点到插值点的距离:+ 越远,其对插值点的影响力 $h_i = \sqrt{(x - x_i)^2 + (y - y_i)^2}$ 越低, 甚至完全没有影响力; (x,y) 为插值点坐标; + 原因2: 离散点越少可以加 (xi, vi) 为离散点坐标; + 快运算速度:

俞入点要素					^	幂 (可选)
GDP				- C		
: 值字段						距离的指数。
GDP Activenty				•		用于饮制肉场值用用占的良
則山伽伯 R.L.: 京心に1 (DDM						用」 任前的 個 值 周 围 黑 的 亚 著 性 。 幂 值 越 高 , 对 远 数 据
K:\gis头短\idw_GDP1						点的影响会越小。它可以是
前出像元大小(可选)						任何大于 0 的实数,但使
500						用从 0.5 到 3 的值可以获
扉(可选)				2		停 該 合 埋 的 结 果 。 默 认 值 为 2。
粤索半径 (可洗)				-		20
<u>变量</u>	→					
搜索半径设置						
点数:	12]				
最大距离:						
俞入障碍折线(polyline)要素	(可选)					
				6		
					-	*
	确定	取消	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	<< 隐藏帮助		工具帮助
						TIN PT IM

輸入点要素					「选) ^
GDP			_		
1. 值字段				距离的	指数。
POINTID			Ŧ	田工物	制由任使国民占约目。
前山価格				用丁控 著性。	副何個值周围魚的亚
K:\gis头短\ldw_GDP4				点的影	响会越小。它可以是
前出像元大小(可 选)				任何大	于 0 的实数,但使
500				月月月 月月	5 到 3 的值可以获
幕(<u>可</u> 选)			F	得載台: 2.	理的结果。默认值为
興委半谷 (司诰)			2	20	
	-				
又王					
授系干伦设置		修改这里			
点数:	12				
最大距离:					
输入障碍折线(polyline)要素	(可选)			16	
					
				Ŧ	*
	确定	取消日子	· 遺… << 隐藏郡!	b Т.	帮助
					YO 3 3P 42

三、实验步骤

- 1 反距离权重插值
 - 1.4 插值结果比较

图代数表达式		地图代数表达式
图层和变量	7 8 9 / == != & Con E 7 8 9 / == != & Con Pick 4 5 6 * > >= SetNull 数学 1 2 3 - < <= ^ Abs 0 . + (()) ~ Exp -	想要运行的地图代数表达 式。 通过指定输入、值、运算符 和要使用的工具来构成表达 式。可直接输入表达式,也 可使用按钮和控件来帮助您 创建表达式。
"Idw_GDP1"-"Idw_GDP3" 社栅格 I:\gis实验\rastercalcl		 图层和受里列表标识可在地图代数表达式中使用的数据集。 这些按钮可用于将数值和运算符输入表达式。您可使用(和)按钮将圆括号应用于表达式。 系统将为您提供常用工具列表。 想要运行的地图代数表达式。 通讨指完输λ、值、运管符 [*]

三、实验步骤

2 样条函数插值

2.1 Regularized函数不同权重的比较

輸入点要素			· · ·	输出栅格	*
GDP					
1. 值字段				The output interpolated	
GDP				surface raster.	
輸出栅格					
E:\gis实验\Spline_GDPO					
俞出像元大小 (可选)					
500					
洋条函数类型 (可洗)					
REGULARIZED					
双重 (可选)					
			0		
点数 (可选)					
			12		
			-		-
	确定	取消 环境…	<< 隐藏帮助	工具帮助	
				NO 7 30	42

輸入点要素			^	输出像元大小 (可选)
GDP			- 🧀	
(值字段)				The cell size at which the
GDP			*	output raster will be
俞出栅格				created.
E:\gis实验\Spline_GDP3				
俞出像元大小(可选)				This will be the value in the
500				set: otherwise, it is the
¥条函数类型(可选)				shorter of the width or the
REGULARIZED			÷	height of the extent of the
2重(可选)				input point features, in the
			.1	input spatial reference,
5数 (可选)			10	divided by 250.
			12	
			-	
	确定取消	环境 <<	隐藏帮助	工具帮助

三、实验步骤

2 样条函数插值

2.2 Tension函数不同权重的比较

GDP 「 Z 值字段 「 GDP 「 输出栅格 「 E:\gis实验\Spline_GDP6 」 输出像元大小(G边) 」 500 」 样条函数类型(G边) 」 TENSION 、 权重(G)达) 」 12 12	输入点要素		权重 (可选)
Z 值字段 影响表面插值特征的参数。 GDP 输出栅格 E:\gis实验\Spline_GDP6 输出像元大小(可选) 500 样条函数类型(可选) TENSION 双重(可选) 点数(可选) 0 12 12	GDP	I 🖻	
GDP • 输出栅格 使用 REGULARIZED 选项 B:\gi :实验\Spline_GDP6 > 输出像元大小 (可选) > 500 > 样条函数类型 (可选) > TENSION • 点数 (可选) 0 12 12	Z 值字段		影响表面插值特征的参数。
输出栅格 使用 REGULARIZED 选项 B:\gis实验\Spline_GDP6 Image: Comparison of the set of the	GDP		
E:\gis实验\Spline_GDP6 时,它定义曲率载小化表达式中表面的三阶导数的权重。如果使用 TENSION 选项,它将定义张力的权重。 \$00 一 样条函数类型(可选) ▼ TENSION ▼ 权重(可选) 0 点数(可选) 12	输出栅格		使用 REGULARIZED 选项
輸出像元大小(可选) 「本報面的生が存数時代 500 「 样条函数类型(可选) 「 TENSION 「 校重(可选) 0 点数(可选) 12	E:\gis实验\Spline_GDP6		时,它定义田率煎小化表达
500 ■ ■ ■ ■ □ <td>输出像元大小(可选)</td> <td></td> <td>重。加里伸田 TENSION 进</td>	输出像元大小(可选)		重。加里伸田 TENSION 进
样条函数类型(可选) TENSION 权重(可选) 0 点数(可选) 12	500		项,它将定义张力的权重。
TENSION マレロ 駅以权重为 0.1。 へ町迭) ① ① 点数(可迭) 12 默以权重为 0.1。	样条函数类型(可选)		
权重 (可选) 点数 (可选) 12	TENSION	-	默认权重为 0.1。
0 点数 (可选) 12	权重 (可选)		
点数 (可选) 12		0	
12	点数 (可选)		
		12	
确定 取消 环境… <<隐藏帮助 工具帮助		→ 一	工具帮助

输入点要素			^	权重 (可洗)
GDP			_	
Z 值字段				影响表面插值特征的参数。
GDP			-	
輸出栅格				使用 REGULARIZED 选项
E:\gis实验\Spline_GDP7				时,它定义田率载小化表达 式由主面的三阶号数的规
輸出像元大小 (可选)				重。加里伸田 TENSION 法
500				项,它将定义张力的权重。
样条函数类型 (可选)				
TENSION			-	默认权重为 0.1。
权重 (可选)				
he dat			5	
点数 (可选)			10	
			12	
			*	1
		771#		

HENAN NORMAL UNIVERSITY

三、实验步骤

3 其他插值方法

3.1 克里金插值法

				半变异函数属性
· 估合码			⊥ <u>□</u>	The Semivariogram model
· 国子权 GDP				to be used. There are two
。 俞出表面栅格				methods for kriging,
E:\gis实验\Kriging	GDP1			Ordinary and Universal.
半变异函数属性				
克里金方法:	◎ 普通	◎ 通用		Ordinary kriging can use the following semivariogram models:
半变异模型: 俞出像元大小(可选)	球面	▼ 高级参数	E	 Spherical— Spherical semivariogram model. This is the default
500				Circular— Circular
搜索半径 (可选)				semivariogram
变量	•			model.
搜索半径设置				Exponential
E da	10		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	semivariogram
点数:	12			model.
最大距离:			•	• Gaussian— Gaussian or normal 👻
	确	定 取消 环境	t <<隐藏帮助	工具帮助

三、实验步骤

- 3 其他插值方法
 - 3.2 自然邻域法

输入点要素			*	输出像元大小 (可选)
GDP		•	1 🦰	
, Z 值字段				The cell size at which the
GDP			•	output raster will be
输出栅格				created.
E:\gis实验\Natural_GDP2			6	
输出像元大小 (可选)				This will be the value in the
500				environment if it is explicitly
				shorter of the width or the
				height of the extent of the
				input point features, in the
				input spatial reference,
				divided by 250.
			-	
	确定 取消	环境 <<]	急藏帮助	工具帮助

三、实验步骤

3 其他插值方法

3.2 克里金插值法

输入点要素			输出像元大小 (可选)
GDP			
Z 值字段			The cell size at which the
GDP			output raster will be
输出栅格			created.
E:\gis实验\Trend_GDP1			This will be the velocity in the
输出像元大小 (可选)			anvironment if it is explicitly
500			set: otherwise it is the
多项式的阶(可选)			shorter of the width or the
the state of the s		1	height of the extent of the
回归类型(可选)			input point features, in the
LINEAR 绘中 pus 文件 (司法)		Ť	input spatial reference,
和山 和ら 文件 (円)20			divided by 250.
			-
	确定 取消	」 环境… << 隐藏帮助	工具帮助

一、实验背景

现有某地区一系列高程采样点,需要通过内插生成 该地区的高程层面,为后续研究提供合理的数据层 面信息。

二、实验目的

地统计模块中提供了六种克里金插值方法,每种方 法的原理及适用范围不尽相同。通过练习熟练掌握 并理解每种克里金方法的原理及实现过程,体会在 具体应用中的适应性

三、实验步骤

实验数据存放在.....\Chp10\Ex1

~(T() ADDES(L) ()CES()) 书签(B) 插入(I) 选择(S) 地理处理(G) 自定义(C) 窗口(W) 帮助(H)	
10 🖻 🖶 🖨 I 🗞 👘 I	a x 1 9 (a) 🔂 📲 🚺 🚽 🙀 🖉 🖉 🖓 🖓	-
	1 2 2 100% - E 1 2 2 2	
	◆ → 図 - □ ▶ ④ 彡 回 益 単 : 編編器(R) - ト ▶ ノ ア Д - 法	Nh + X 1 N P
内容列表	添加数据	
8: 9 😔 🗳 🗄	査技范围: Carter Ex1 ◆ 合 分 ③ 日 → 24 Carter Cart	
● 图层	Result	
	i jyg.shp	
		「「」」「「」」「「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」
		=
		E
		E
		E
	名称: jyg.shp 添加	
	名称: jyg.shp 添加 显示类型: 数据集和图层 ▼ 取消	
	名称: jyg.shp 添加 显示类型: 数据集和图层 ▼ 取消	
	名称: jyg.shp 添加 显示类型: 数据集和图层 • 取消	
	名称: jyg.shp 显示类型: 数据集和图层 ▼ 取消 取消 受数据目理工具 受线性参考工具 ▼	
	名称: jyg.shp 显示类型: 数据集和图层 ▼ 取消 取消 受数据目理工具 ● ● SH <	

输入要素			输出训练要素类	^
jyg		I 🔁	あの(2465)川はままか う	7 年
輸出训练要素类			安创建的机场安东的力	广集∘
E:\gis实验\jyg_train.shp				
输出测试要素类(可选)				
训练要素子集的大小(可选)		80		
子隼大小单位 (可诜)				
PERCENTAGE_OF_INPUT				
			*	-
	确定 取消	环境 << 隐藏帮助	工具帮助	

三、实验步骤

2 数据插值

) 视图(V) 书签(B) 插入(I) 选择	≩(S) 地理处理(G) 自定义	(C) 窗口(W) 帮助(H)			
i 🗅 😝 🖶 🖨	地统计向导: Kriging / CoKriging					
1	Methods	Input Data				
: • • • • •	🗆 Deterministic methods	□ 数据集				(E22)
: 4 4 21 4	Inverse Distance Weighting	Source Dataset	jyg_train	×	ALE O	
内容列表	Global Polynomial Interpolation	Data Field	STATION			<u>^</u> 🚺
S- 0 😞 🖪	Local Polynomial Interpolation	□ 数据集 2				Π
	Radial Basis Functions	Source Dataset	<none></none>			×
	Geostatistical methods	□ 数据集 3				
🗉 🗹 jyg_tr	Interpolation with barriers	Source Dataset	<none></none>	7		Ę
•	Kernel Smoothing	□ 数据集 4				校
🗆 🗹 iva	Diffusion Kernel	Source Dataset	<none></none>	2 in		4
	关于 Kriging / CoKriging Kriging is an interpolator that can be exa	ct or smoothed depending on th	e measurement error model. It is ver	ry flexible and		Ŀ
	关于 Kriging / CoKriging Kriging is an interpolator that can be exa allows you to investigate graphs of spati output surfaces including predictions, pre a lot of decision-making. Kriging assumes 了解有关 Kriging / CoKriging 的详细信息	ct or smoothed depending on th al auto- and cross-correlation. K ediction standard errors, probab the data come from a stationar	e measurement error model. It is ver friging uses statistical models that allo ility and quantile. The flexibility of kri y stochastic process, and some meth	ry flexible and ow a variety of iging can require nods assume		•

Designing our future

3 结果检验

常规	源 选择 显示	符号系统 字段	定义查询 标	注 连接和关联	时间 HTML 弹出窗口	
 Q. Q. X⁽¹⁾ Arapha Arapha BE BE Ø ØE Ø ØF <	 ● ●	STATION STATION 无 ,从(Y) 4 到(T) 范围 842 - 908 909 - 971 972 - 1016 1017 - 1067 1068 - 1129 素値显示类范围(W)	▼ ▼ 18 18 842 - 908 909 - 971 972 - 1016 1017 - 1067 1068 - 1129	分类 自然间断点分 类(S): 5 ▼	导入(() }级法(Jenks) 分类(C) ●	

212

HENAN NURWAL UNIVERSITY

图像几何校正

版权声明:本教程涉及到的数据仅供练习使用,禁止用于商业用途。

目录

图像	象几何校正	1
1.	概述	2
	1.1 控制点选择方式	2
	1.2 几何校正模型	2
	1.3 控制点的预测与误差计算	2
2.	详细操作步骤	3
	2.1 扫描地形图的几何校正	3
	2.2 Landsat5 影像几何校正	5
	理价	值

*#

N

佰

1.概述

几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,由于校正 过程中会将坐标系统赋予图像数据,所以此过程包括了地理编码。

在开始介绍 ENVI 的几何校正操作之前,首先对 ENVI 的几何校正几个功能要点做一个说明。

1.1 控制点选择方式

ENVI 提供以下选择方式:

(1) 从栅格图像上选择

如果拥有需要校正图像区域的经过校正的影像、地形图等栅格数据,可以从中选择控制点,

对应的控制点选择模式为 Image to Image。

(2) 从矢量数据中选择

如果拥有需要校正图像区域的经过校正的矢量数据,可以从中选择控制点,对应的模式为 Image to Map。

(3) 从文本文件中导入

事先已经通过 GPS 测量、摄影测量或者其他途径获得了控制点坐标数据,保存为以[Map (x,y), Image (x,y)]格式提供的文本文件可以直接导入作为控制点,对应的控制点选择模式为 Image to Image 和 Image to Map。

(4) 键盘输入

如果只有控制点目标坐标信息或者只能从地图上获取坐标文件(如地形图等),只好通过键 盘敲入坐标数据并在影像上找到对应点。

1.2 几何校正模型

ENVI 提供三个几何校正模型:仿射变换(RST)、多项式和局部三角网(Delaunay Triangulation)。

1.3 控制点的预测与误差计算

控制点的预测是通过控制点回归计算求出多项式系数,然后通过多项式计算预测下一个控制点位置,RMS 值也是用同样的方法。默认多项式次数为 1,因此在选择第四个点时控制点预测功能可以使用,随着控制点数量的增强,预测精度随之增加。最少控制点数量与多项式次数 网址: www.esrichina.com.cn 技术支持邮箱: ENVI-IDL@esrichina.com.cn 电话: 010-57632288 技术支持热线: 400-819-2881-7

的关系为(n+1)²。

本课程使用的数据列表如下:

表 1.1 练习数据说明

文件	说明
5wDRG\taian-drg.tif	1:5 万地形图数据
5wDRG\GCP.pts	包括9个控制点的控制点文件
TM 与 spot\bldr_sp.img(和.hdr)	带有地理坐标的、10米分辨率的 SPOT 全色图像
TM 与 spot\bldr_tm.img(和.hdr)	没有地理坐标、30米分辨率的 TM 多光谱图像
points.pts	控制点文件

2.详细操作步骤

2.1 扫描地形图的几何校正

第一步:打开并显示图像文件

开始>程序>ENVI5.1>Tools>ENVI Classic,选择主菜单>File>Open Image File,将 taian-drg.tif 文件打开,并显示在 Display 中。

第二步: 启动几何校正模块

- (1) 主菜单>Map>Registration>Select GCPs:Image to map,打开几何校正模块。
- (2) 在 Image to Map Registration 面板中,选择 Beijing_1954_GK_Zone_20, X/Y Pixel Size 分别输入 4,单击 OK,打开 Ground Control Points Selection 面板。

注: 国内坐标系直接使用"国内坐标系文件"中的内容。

		理	价	值
	柏			
10pg				
R				

Image to Map Registration	×
Input Display Display #1 🗸	
Select Registration Projection New	
Beijing_1954_GK_Zone_21 Beijing_1954_GK_Zone_20	
Beijing_1954_GK_Zone_20N Beijing_1954_GK_Zone_19N Beijing_1954_GK_Zone_19	
Beijing_1954_GK_Zone_18 Beijing_1954_GK_Zone_18 Beijing_1954_GK_Zone_18N	
Beijing_1954_GK_Zone_17N Beijing_1954_GK_Zone_17	~
Datum D_Beijing_1954	
Units Meters	
X Pixel Size 4.00000000 Meters	
Y Pixel Size 4.00000000 Meters	
OK Cancel	

图2.1 选择坐标系及输出网格大小

(3) 在 Displsy 视图中,定位到左上角第一个公里网交互处,从图上读取 X: 20501000,
 Y: 4003000,填入在 Image to Map Registration 面板中的 E 和 N,单击 Add Point 按钮,
 增加第一个控制点。

图2.2 读取控制点坐标信息并手动输入

(4) 在 Displsy 视图中,向右平移 10 个公里网,即到 X: 20511000 处,在 Image to Map

Registration 面板中 E: 20511000 和 N: 4003000。单击 Add Point 按钮, 增加一个控制点。

- (5) 当选择 3 个点时候, Pretict 按钮亮起,可以在 E 和 N 中输入坐标,单击 Pretict 按钮 自动在图上大致定位,或者选择 Options>Auto Pretict,可以自动根据坐标值在图上定位。
- (6) 同样的方法,在图上均匀添加9个控制点。
- (7) 在 Ground Control Points Selection 上,选择 Options>Warp File,选择校正文件 taian-drg.tif,点击 OK。
- (8) 在校正参数面板中,校正方法选择多项式(2次)。
- (9) 重采样选择 Bilinear,背景值(Background)为0。
- (10) 选择输出路径和文件名,单击 Ok 按钮。

Registration Parameters							
Output Projection and Map Extent Upper Left Corner Coordinate Proj : Beijing_1954_GK_Zone_20 Datum: D_Beijing_1954 20498494.5254 E Change Proj 4007670.7186 N Units: Meters X Pixel Size 4.0000000 Meters Y Pixel Size 4.0000000 Meters Output X Size 6765 pixels Output Y Size 5634 pixels Options	Warp Parameters Method Polynomial ∨ Degree 2 ◆ Resampling Bilinear ∨ Background 0 Output Result to ● File ○ Memory Enter Output Filename Choose E:\temp\taian-drg-jiaozheng.dat						

图2.3 参数输出设置面板

2.2 Landsat5 影像几何校正

下面学习以具有地理参考的 SPOT4 10 米全色波段为基准影像,对 Landsat5 TM 30 米图像的几何精校正过程,文件都是以 ENVI 标准栅格格式储存,数据存放在"04.遥感图像几何校正\数据\TM 与 spot"文件夹内,其流程如下图所示:

9KX

图2.4 几何校正一般流程

第一步:打开并显示图像文件

开始>程序>ENVI5.1>Tools>ENVI Classic,主菜单>File>Open Image File,将 SPOT(bldr_sp.img) 和 TM 图像(bldr_tm.img) 文件打开,并分别在 Display 中显示两个影像。

第二步: 启动几何校正模块

- (1) 主菜单>Map>Registration>Select GCPs:Image to Image,打开几何校正模块。
- (2) 选择显示 SPOT 文件的 Display 为基准影像(Base Image),显示 TM 文件的 Display 为待校正影像(Warp Image),点击 OK 进入采集地面控制点。

Image to	Image Regist	<			
Select displa	ys containing images	:			
Base Imag Display #1	e Warp Image Display #1				
Display #2	Display #1 Display #2				
Selected It	em: Selected Item:				
Display #1	Display #2				-
OK Ca	incel			理	ALL A
图2.5 选持	 译基准与待校正影像	泉	府		
制点		TIT			

第三步:采集地面控制点

(1) 在两个 Display 中找到相同区域,在 Zoom 窗口中,点击左小下角第三个按钮,打开

定位十字光标,将十字光标到相同点上,点击 Ground Control Points Selection 上的 Add Point 按钮,将当前找到的点加入控制点列表。

- (2) 用同样的方法继续寻找其余的点,当选择控制点的数量达到 3 时,RMS 被自动计算。 Ground Control Points Selection 上的 Predict 按钮可用,选择 Options>Auto Predict,打开自动 预测功能。这时在 Base Image (Spot 影像)上面定位点,Warp Image (TM 影像)上会自动 预测区域。
- (3) 当选择一定数量的控制点之后(至少 3 个),可以利用自动找点功能。Ground Control Points Selection 上,选择 Options>Automatically Generate Points,选择一个匹配波段,这里 选择 band5,点击 OK,弹出自动找点参数设置面板,设置 Tie 点的数量为 50, Search Window Size 为 131,其他选择默认参数,点击 OK。

Ę	Automatic Tie Po	ints Paramete 🎴	(
	— Area Based Matching	Parameters —							
	Number of Tie Points	50 🗢							
	Search Window Size	131 🗢							
	Moving Window Size	11 🗢							
	Area Chip Size	128 🗢							
	Minimum Correlation	0.70 🗢							
	Point Oversampling	1 🗢							
	Interest Operator	Moravec 🗸							
	OK Cancel Help								

图2.6 Tie 点自动选择参数设置

(4) 点击 Ground Control Points Selection 上的 Show List 按钮,可以看到选择的所有控制列表,如下图所示。选择 Image to Image GCP List 上的 Options>Order Points by Error,按照 RMS 值有高到底排序。

佰

佰

		4	}			Image to Image GCP List 🛛 🗖 📕									×						
		1	File	Option	s																
~	Order Points	by	/ Erro	r		Base Y	Warp	X	₩arp	Y	redi	ct	redi	ct	(frr	r X	Err	or Y	RMS		
	Clear All Poin	ts				446.00 524.00	246. 168.	35 66	314. 362.	70 06	257. 159.	064 352	310. 355.	21 460	10. -9.	717: 310'	-4. -6.	. 4849 . 597(11.61 11.41	2	
			#34+	813.0	0	1131.0	368.	12	544.	10	369.	042	533.	25:	0.9	266	-10	0.840	10.88	16	
			#37+	1016.	0(35.00	365.	04	150.	16	373.	305	143.	66:	8.2	699	-6.	. 4983	10.51	7	
			#35+	117.0	0	189.00	79.9	90	256.	43	72.5	i96	251.	78:	-7.	306	-4.	. 647:	8.658	9	
			#30+	966.0	0	247.00	376.	39	222.	79	368.	68′	219.	64:	-7.	704	-3.	.1474	8.322	:9	
			#29+	839.0	0	144.00	324.	26	186.	41	318.	75′	191.	999	-5.	506	5.8	5853	7.843	:1	
			#31+	320. 0	0	130.00	145.	49	215.	87	138.	944	218.	99:	-6.	548	3.3	1190	7.253	4	
			#33+	122.0	0	1346.0	149.	00	644.	24	145.	988	650.	484	-3.	012	6. 3	2390	6.928	:4	
			#32+	1026.	0(1252.0	447.	67	555.	31	449.	096	561.	584	1.4	216	6.3	2753	6.434	:S	
			#27+	632. 0	0	243.00	251.	66	232.	99	253.	375	238.	778	1.7	151	5. '	7878	6.036	15	
			#26+	768. 0	0	712.00	332.	85	389.	99	328.	444	391.	84'	-4.	408	1.8	8559	4.783	:5	
			#28+	974.0	0	1142.0	420.	18	526.	47	424.	77:	526.	99'	4.5	873	0.5	5233	4.617	1	
		L	#23+	430.0	0	91.00	170.	31	197.	52	174.	494	198.	814	4.1	808	1.2	2928	4.376	1	~
				<																>	
	Goto On/Off Delete Update Hide List																				

图2.7 控制点列表

(5) 对于 RMS 过高的点,一是直接删除:选择此行,按 Delete 按钮;二是在两个影像的 ZOOM 窗口上,将十字光标重新定位到正确的位置,点击 Image to Image GCP List 上的 Update 按 钮进行微调,这里直接做删除处理。

(6) 总的 RMS 值小于 1 个像素时,完成控制点的选择。点击 Ground Control Points Selection 面板上的 File>Save GCPs to ASCII,将控制点保存。

第四步:选择校正参数输出

有两种校正输出方式: Warp File 和 Warp File (as Image Map)。推荐使用 Warp File (as Image Map)。

- Warp File
- (1) 在 Ground Control Points Selection 上,选择 Options->Warp File,选择校正文件(TM 文件)。
- (2) 在校正参数面板中,校正方法选择多项式(2次)。
- (3) 重采样选择 Bilinear,背景值(Background)为 0.
- (4) Output Image Extent:默认是根据基准图像大小计算,可以做适当的调整。
- (5) 选择输出路径和文件名,单击 Ok 按钮。

这种校正方式得到的结果,它的尺寸大小、投影参数和像元大小(如果基准图像有投影)都和 基准图像一致。

Registration Parameters					
Warp Parameters					
Method Polynomial 🗸 Degree 2 🗢					
Resampling Bilinear 🗸					
Background					
Output Image Extent					
Upper Left X −78 ●					
Upper Left Y −92 🔶					
Output Samples 1400 🗢					
Output Lines 1602					
Output Result to 💿 File 🛛 Memory					
Enter Output Filename Choose					
OK Queue Cancel					

图2.8 Warp File 校正参数设置

- Warp File (as Image Map)
- 在 Ground Control Points Selection 上,选择 Options> Warp File (as Image to Map), 选择校正文件(TM 文件)。
- (2) 在校正参数面板中,默认投影参数和像元大小与基准影像一致。
- (3) 投影参数保持默认,在 X 和 Y 的像元大小输入 30 米,按回车,图像输出大小自动 更改。
- (4) 校正方法选择多项式(2次)。
- (5) 重采样选择 Bilinear,背景值(Background)为 0.
- (6) Output Image Extent:默认是根据基准图像大小计算,可以做适当的调整。

选择输出路径和文件名,单击 Ok 按钮。

	地	理	价	值
10pg				
R				

Registrat	ion Parameters	
Output Projection and Map Extent Upper Left Corner Coordinate Proj : UTM, Zone 13 North Datum: North America 1927 467242.8286 E Change Proj 4442406.3978 N Units: Meters X Pixel Size 30.0000000 Meters Y Pixel Size 30.0000000 Meters Output X Size 467 pixels Output X Size 534 pixels Options	Warp Parameters Method Polynomial V Degree 2 Resampling Bilinear Background 0 Output Result to File Memory Enter Output Filename Choose TM-jz. dat	

图2.9 Warp File (as Image to Map)校正参数设置

第五步: 检验校正结果

检验校正结果的基本方法是:同时在两个窗口中打开图像,其中一幅是校正后的图像,一幅是基准图像,通过地理链接(Geographic Link)检查同名点的叠加情况。

在显示校正后结果的 Image 窗口中,右键选择 Geographic Link 命令,选择需要链接的两个 窗口,打开十字光标进行查看,如下图所示。

或者直接在 ENVI5 新界面下打开两幅图像进行对比。

		理	价	值
	柏			
117p				
Ā				

图2.10 检验校正结果

ArcGIS 10.0 在 DEM 的基础上划分小流域

根据 DEM 提取河流网络,计算流水累积量、流向、根据指定的流域面积大小自动划分 流域

1. 加载 DEM

打开 ArcMap,加载数据 DEM 数据文件

如果 DEM 中有很多异常值,可能刚加载进来的时候是全灰或者全白,这个时候需要右 键→图层属性,进行调整。

2. Fill

DEM 表面存在着一些凹陷的区域(DEM 本身是插值计算的,很难与现实情况完全符合), 由于这些区域异常低值存在,使得该区域在进行水流流向计算时得到不合理的水流方向。 因此,应该首先对原始 DEM 数据进行洼地填充,得到无洼地的 DEM。 打开 ArcToolbox 中的水文分析模块。使用 Spatial Analyst Tools→Hydrology→Fill 如果没有水文分析模块,请用 Customize→Extensions→Spatial Analyst 添加扩展模块。

Input surface raster			
			⊥ 🖻
Output surface raster			
T. (nesearch (TEMP (2nangyaorang mingx 7 limit (optional)			
2 limit (optional)			
	 	-	

3. Flow Direction

ArcGIS 中的水流方向利用 D8 算法计算。针对每一个栅格,将其高程与周围八个栅格进行比较,得到水流方向。最终得到的结果是一个栅格图,每个象元上的值的含义如下图所示。如果某象元算得的水流方向是正东方向,则值为1.如果西北,则为128,以此类推。

32	64	128
16		1
8	4	2

Direction coding

The coding of the direction of flow

注意,这里要用的 DEM 已经不是原始的 DEM 了,需要用经过 Fill 后的 DEM,也就是第二步生成的结果 DEM。(文件命名不能超过 13 个字符?好像是)

使用 Spatial Analyst Tools→Hydrology→Flow Direction

DEMFill		
Jutput flow direction raster		
F:\Research\TEMP\zhangyaofang\ni	ngxia\flowdir	
Force all edge cells to flow outward Dutput drop raster (optional)	(optional)	_
		🔁

4. Flow Accumulation

Flow Accumulation 由 Flow Direction 数据计算而来。每一个栅格 Flow Accumulation 的值代表着其上游有多少个栅格的 Flow Direction 最终汇流经过该栅格。一般而言,计算出来的 Accumulation 的数值数值越大,代表越有可能是河谷。

Flow direction

0	0	0	0	0	0
0	1	1	2	2	0
0	3	7	5	4	0
0	0	0	20	0	1
0	0	0	1	24	0
0	2	4	7	35	2

Flow accumulation

32	64	128
16+	11	• 1
8	4	2

Direction coding

Determining the accumulation of flow

使用 Spatial Analyst Tools→Hydrology→Flow Accumulation

Flow Accumulation					
Input flow direction raster					
flowdir				- 2	
Output accumulation raster					
F:\Research\TEMP\zhangyaofang\nin	gxia\FlowAccum			e	
Input weight raster (optional)					_
				I 🖻	
Output data type (optional)					
FLOAT					1
				<u> </u>	
	ОК	Cancel	Environments	Show Help	>>

5. 河网计算

当 Flow Accumulation 达到一定值的时候,就会产生地表水流,那么所有那些 Flow Accumulation 大于阈值的栅格就是潜在的水流路径,由这些水流路径构成的网络,就是河网。这个阈值是需要人为设定的,与定义的汇水面积有关。这里,我们设置为 10000,也就是说,如果在某个栅格的上游有 10000 个栅格的水流会流经这个栅格,则将这个栅格定义为河流。由于本文用的栅格是 30 米×30 米,也就是说,如果某个栅格点,其上游的汇水面积超过 9 平方公里,则认为这里是河流。

使用 Spatial Analyst Tools→Map Algebra→Raster Calculator

🔨 Raster Calculator		
Map Algebra expression		*
Layers and variables FlowAccum flowdir DEMFill	7 8 9 $l = 1 = \&$ Condition 7 8 9 $l = 1 = \&$ Pick 4 5 6 $> > = $ SetVull 4 5 6 $> > = $ Math 1 2 3 $- < < = ^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^$	onal
Con("FlowAccum">10000,1)		
Output raster		
	OK Cancel Environments	- Show Help >>
Q Untitled - ArcMap - ArcInfo	Selection Geographics Curtomize Windows Help	
	→ 1:4,486,342	🚆 🗄 Network Analyst 🕶 🚆
	🖾 👠 🚳 🥖 💷 🔛 🎢 📸 🐥 🔟 🗔 💭 🚽 Éditor - ト 🍡	ノア 4 - 米田
Table Of Contents 4 ×		-
Constraints and the second se		
 □ flowdir □ 1 □ 2 □ 4 ■ 8 □ 16 □ 32 ■ 64 ■ 128 □ DEMFill Value 		=
← Hiah: 3537		

6. Stream link

Stream link 记录着河网中节点之间的连接信息。Stream link 的每条弧段要么连接着两个 作为出水点或汇合点的结点,要么连接着作为出水点的结点和河网起始点。<u>河网节点是</u> 计算流域的输入参数。

使用 Spatial Analyst Tools→Hydrology→Stream Link

Illustration of the links in a stream channel

in part and an index of		
streamnet		I 🖻
nput flow direction raster		
flowdir		I 🖻
Dutput raster		

7. Watershed

先确定一个出水点,然后结合水流方向数据,分析搜索出该出水点上游所有流过该 出水口的栅格,化为这个出水点之上的流域。这里,我们将第6步算出来的河流节点作 为这一步的出水点数据。当然,这样的话计算出的流域将会很破碎,而且得不到流域之 间的隶属关系。如果需要得到更为精确的流域,那么就需要人工去判读出水点。

使用 Spatial Analyst Tools→Hydrology→Watershed

到这一步,就把所有的集水区划分出来了。为了显示的需要,我们还需要将河网加进来,以显示每个小流域隶属哪一段河道。

8. 将河网转成矢量图

第五步生成的河网图是栅格的,这里需要将其转化为矢量的,以作为图层查看流域。

使用 Spatial Analyst Tools→Hydrology→Stream to Feature

到这里为止,就基本符合要求了。。下面第9步之后的东西,是为了以后其他计算的需要,例如给流域添加属性,计算流域的面积等用的。

9. 将流域的栅格转矢量

Conversion Tools→From Raster→Raster to Polygon

现在就可以做专题图来显示不同的流域了

10. 通过裁剪获得指定范围的栅格图

给定数据,1)栅格图。2)给定范围的面状图层。

加载数据

本例中右一副大范围的 DEM 图,有一个小的面状区域。现在需要获得该小面状范围的 DEM。

打开 ArcToolbox

使用 Data Management Tools→Raster→Raster Processing→Clip 设置相关参数

Input Baster				
DEM.img			•	
, Output Extent (optional)				
Guyuan			•	
Rectangle	Y Maximum			_
		3916638.246852		
X Minimum		X Maximum		
	84569.397627		133647.609471	
	Y Minimum			
		3800961.394228	Clear	
☑ Use Input Features for Clip Output Raster Dataset	ping Geometry (optional)			
F:\Research\TEMP\zhangya	ofang\DEM_Guyuan1.img			2
NoData Value (optional)				_

注意,如果使用的面不是规则矩形,一定要点上"Use Input Features for Clipping Geometry(optional)

查看结果

西安

武汉

宁阳王营

桃子漫画

鲍秀兰诊室

晚风暮雨PLUS

古建家园

龚国荣宁波

风中的树

苏丹卿

第3448篇•《感冒被窝》桃子漫画

宝宝出牙时有什么表现?如何护理

准确预测太平洋战争的2位奇人,14

古代人冬天如何取暖? 古建筑有哪!

怎样的妆容,能够让你从平庸变成; 明月残弓_塔罗牌占卜师

香妃墓:现代技术难以复制300年前

【你好2020! 宁波第一缕阳光】

有哭有笑,有梦想,有遗忘

ENVI-IDL技术殿堂的博客

✔ 博客认证 ENVI-IDL中国官方微博

http://blog.sina.com.cn/enviidl [订阅] [手机订阅] 首页 博文目录 关于我

个人资料	正文	字体大小: <u>大</u> 中 <u>小</u>
😂 ENVI	【ENVI入门系列】11.遥感图像监督分类 (2014-09-29 08:30:43) 标签:杂读 分类: ENVI	转 载 ▼
シンシン・シンシン・シンシン・シンシン・シンシン・シンシン・シンシン・シンシ	版权声明:本教程涉及到的数据仅供练习使用,禁止用于商业用途。 目录 運感图像监督分类 1. 概述 2. 详细操作步骤 第一步: 类別定义/特征判別 第二步: 样本选择 第三步: 分类器选择 第四步: 影像分类 第五步: 分类后处理 第六步: 精度验证 1.概述	能是在分类之前通过 冲类别选取一定数量
	的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进 于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。使每个像 较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。 遥感影像的监督分类一般包括以下6个步骤,如下图所示:	ŀ行训练,使其符合 ╦元和训练样本作比
相关博文 全球最大的佛像有多大?光脚面就: 老鼠皇帝首席村妇	类别定义/特征判别。	幻灯播放
落实教育惩戒权,需要家长的理解;	◆最大似然。	

样本选择。

ŧ

分类器选择.

影像分类。

分类后处理。

结果验证。

图1.1 监督分类步骤

最小距离。

马氏距离。

神经网络。

支持向量机

其他。

【ENVI入门系列】11. 遥感图像监督分类_ENVI-IDL技术殿堂_新浪博客

本课程以Landsat tm5数据Can_tmr.img为数据源,学习ENVI中的监督分类过程。

更多>>

推荐博文

的纯贵妃

X N

查看更多>>

登高俯瞰克罗地

亚岛城

谁看过这篇博文

不不要看…	1月6日
勋仔James	1月6日
用户56795…	1月6日
用户19982…	1月3日
用户30370…	1月3日
1282951788	1月3日
mmYY201705	1月3日
拈花不笑	1月2日
用户31384…	1月2日
用户21345…	1月2日
Healer-Q	1月1日
、、碧落	12月31日

2.详细操作步骤

第一步:类别定义/特征判别

根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。 启动ENVI5.1,打开待分类数据:can_tmr.img。以R:TM Band 5,G:TM Band 4,B:TM Band 3波段组合显示。

通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。

第二步:样本选择

(1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择"New Region Of Interest",打开 Region of Interest (ROI) Tool面板,下面学习利用选择样本。

- 1)在Region of Interest (ROI) Tool面板上,设置以下参数:
- ROI Name : 林地
- ROI Color : (0, 153, 0)

rie Opt	ions H	elp		
a r (94) (¥ 🎯 1	8		
ROI Name	林地			
ROI Color	(0, 1	53,0)		•
Geometry	Pixel	Grow	Threshold	1
	٥r	30		
🕅 Multi	Part	Ver	tez Snap	
Record C	ount 0	3	X	
		+ +	X H	

图2.1 Region of Interest (ROI) Tool面板上设置样本参数

2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形 绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择;

3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上;

4) 这样就为林地选好了训练样本。

注:1、如果要对某个样本进行编辑,可将鼠标移到样本上点击右键,选择Edit record是修改样本,点击 Delete record是删除样本。

2、一个样本ROI里面可以包含n个多边形或者其他形状的记录(record)。

3、如果不小心关闭了Region of Interest (ROI) Tool面板,可在图层管理器Layer Manager上的某一类样本(感兴趣区)双击鼠标。

(2)在图像上右键选择New ROI,或者在Region of Interest (ROI) Tool面板上,选择

- 具。重复"林地"样本选择的方法,分别为草地/灌木、耕地、裸地、沙地、其他5类选择样本;
- (3) 如下图为选好好的样本。

图2.2训练样本的选择

(4)计算样本的可分离性。在Region of Interest (ROI) Tool 面板上,选择Option>Compute ROI Separability,在Choose ROIs面板,将几类样本都打勾,点击OK;

(5)表示各个样本类型之间的可分离性,用Jeffries-Matusita, Transformed Divergence参数表示,这两个参数的值在0~2.0之间,大于1.9说明样本之间可分离性好,属于合格样本;小于1.8,需要编辑样本或者重新选择样本;小于1,考虑将两类样本合成一类样本。
【ENVI入门系列】11. 遥感图像监督分类_ENVI-IDL技术殿堂_新浪博客

0	ROI Separability Report		×
File			
Input File: (ROI Name	can_tmr.img : (Jeffries-Matusita, Transformed	Divergence)	^
林地: 耕地:(1 草地/灌木 裸地:(1 沙地:(1 其他:(1	.95050957 1.99720241) :: (1.67544812 1.92819655) .99960718 1.9993675) .9998854 2.00000000) .91625240 1.99530391)		
耕地: 林地:(1 草地/灌木 裸地:(1 沙地:(1 其他:(1	.95050957 1.99720241) :: (1.90351237 1.99999984) .9766637 2.00000000) .99967328 2.00000000) .99985222 2.00000000)		
草地/灌木: 林地:(1 耕地:(1 裸地:(1 沙地:(1 其他:(1	.67544812 1.92819655) 90351237 1.99999984) 87010646 1.92868024) 94053172 1.97670622) 98844031 1.99996639)		
裸地: 林地:(1 耕地:(1 草地/灌木 沙地:(1 其他:(1	.99960718 1.99993675) 97666637 2.0000000) 5. (1.87010646 1.92868024) 81943264 1.90201506) 99999976 2.00000000)		
沙地: 林地:(1 耕地:(1 草地/灌木 裸地:(1 其他:(2	.99998654 2.00000000) 99967328 2.00000000) 5. (1.94053172 1.97670622) 81943264 1.90201506) 00000000 2.00000000)		
其他: 林地:(1 耕地:(1 草地/灌オ 裸地:(1 沙地:(2	91625240 1.99530391) 99985222 2.0000000) <: (1.99844031 1.9999639) 99999976 2.00000000) 00000000 2.00000000)		
Pair Separat:	ion (least to most);		
林地 and 草地 裸地 and 草地 裸地 and 沙地 幕地 and 草地 幕也 and 草地 草地 灌木 and 幕地 幕地 and 幕地 幕地 本 and 幕地 本 and 幕地 本 and 幕 本 and 幕 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本	2/灌木 - 1.67544812 1 - 1.81943264 2 - 道根地 - 1.87010646 2 /灌木 - 1.90351237 1 - 1.91625240 1 沙地 - 1.94053172 2 - 1.95050957 2 - 1.97666637 4 其他 - 1.99860718		
<			>

图2.3样本可分离性计算报表

注:1、在图层管理器Layer Manager中,可以选择需要修改的训练样本。

2、在Region of Interest (ROI) Tool面板上,选择Options > Merge (Union/Intersection) ROIs,在 Merge ROIs面板中,选择需要合并的类别,勾选Delete Input ROIs。

elect BOIs to Herg ② ② 林坦 — ② ② 草地/基本 — ② ③ 草地/基本	•
一日 经 其他	
fumber of items sel	ected: 2
Number of items select All Items	ected: 2 Clear All Items
Number of items sel Select All Items erge Method: © Uni	ected: 2 Clear All Items ion O Intersection
Rumber of items self Select All Items erge Method:	ected: 2 Clear All Items ion Intersection

图2.4 Merge ROIs面板

(6) 在图层管理器中,选择Region of interest,点击右键, save as,保存为.xml格式的样本文件。

注:1、早期版本的感兴趣文件格式为.roi,新版本的为.xml,新版本完全兼容.roi文件,在Region of Interest (ROI) Tool面板上,选择File>Open打开.xml或.roi文件。

2、新版本的.xml样本文件(感兴趣区文件)可以通过, File>Export>Export to Classic菜单保存为.roi文件。

第三步:分类器选择

根据分类的复杂度、精度需求等确定哪一种分类器。目前ENVI的监督分类可分为基于传统统计分析学的,包括平行六面体、最小距离、马氏距离、最大似然,基于神经网络的,基于模式识别,包括支持向量机、模糊分类等, 针对高光谱有波谱角(SAM),光谱信息散度,二进制编码。下面是几种分类器的简单描述。

• 平行六面体 (Parallelepiped)

根据训练样本的亮度值形成一个n维的平行六面体数据空间,其他像元的光谱值如果落在平行六面体任何一个训 练样本所对应的区域,就被划分其对应的类别中。

• 最小距离 (Minimum Distance)

利用训练样本数据计算出每一类的均值向量和标准差向量,然后以均值向量作为该类在特征空间中的中心位置, 计算输入图像中每个像元到各类中心的距离,到哪一类中心的距离最小,该像元就归入到哪一类。

• 马氏距离 (Mahalanobis Distance)

【ENVI入门系列】11. 遥感图像监督分类_ENVI-IDL技术殿堂_新浪博客

计算输入图像到各训练样本的协方差距离(一种有效的计算两个未知样本集的相似度的方法),最终技术协方差 距离最小的,即为此类别。

• 最大似然 (Maximum Likelihood)

假设每一个波段的每一类统计都呈正态分布,计算给定像元属于某一训练样本的似然度,像元最终被归并到似然 度最大的一类当中。

• 神经网络 (Neural Net)

指用计算机模拟人脑的结构,用许多小的处理单元模拟生物的神经元,用算法实现人脑的识别、记忆、思考过程。

• 支持向量机 (Support Vector Machine)

支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。

• 波谱角 (Spectral Angle Mapper)

它是在N维空间将像元与参照波谱进行匹配,通过计算波谱间的相似度,之后对波谱之间相似度进行角度的对比,较小的角度表示更大的相似度。

第四步:影像分类

基于传统统计分析的分类方法参数设置比较简单,在Toolbox/Classification/Supervised Classification能找到 相应的分类方法。这里选择支持向量机分类方法。在toolbox中选择/Classification/Supervised Classification/Support Vector Machine Classification,选择待分类影像,点击OK,按照默认设置参数输出 分类结果。

Select Classes From Regions: 対処 結約 運動/過水 準約 公約 資源 公約 自治 自治 自治 自治 自治 自治 自治 自治 自治 自治			Output Result to File O Memory Enter Output Class Filename Choose E:\teap\can_tar_class
Number of items so Select All Items	elected: 6 Clear All It	ens	Output Rule Images ? Tes 41 Output Result to @ File O Memory Enter Output Rule Filemame Choose
SVM Options			E:\teap\can_tar_rule
Kernel Type	Radial Basis Linear Polynomial Radial Basis Sigmoid	Function ¥	
Gamma in Kernel Function		0.167	
Penalty Parameter		100.000	
Pyramid Levels		0 单	
Classification Pr	obability Thresh	old 0.00	

图2.5 支持向量机分类器参数设置

图2.6 支持向量机分类结果

第五步:分类后处理

包括更改类别颜色、分类后统计、小斑块处理、栅矢转换等,这部分专门有一节课讲解。在此不做叙述。 第六步:精度验证

对分类结果进行评价,确定分类的精度和可靠性。有两种方式用于精度验证:一是混淆矩阵,二是ROC曲线,比较常用的为混淆矩阵,ROC曲线可以用图形的方式表达分类精度,比较抽象。

真实参考源可以使用两种方式:一是标准的分类图,二是选择的感兴趣区(验证样本区)。两种方式的选择都可以通过主菜单->Classification->Post Classification->Confusion Matrix或者ROC Curves来选择。

真实的感兴趣区验证样本的选择可以是在高分辨率影像上选择,也可以是野外实地调查获取,原则是获取的类别参考源的真实性。由于没有更高分辨率的数据源,本例中就把原分类的TM影像当作是高分辨率影像,在上面进行目视解译得到真实参考源。

(1)在Data Manager中, 分类样本上右键选择Close, 将分类样本从软件中移除

【ENVI入门系列】11. 遥感图像监督分类_ENVI-IDL技术殿堂_新浪博客

(2) 直接利用ROI工具,跟分类样本选择的方法一样,即重复第二步,在TM图上选择6类验证样本。 注:可直接File>open,打开can_tm-验证样本.roi。

图2.7选择验证样本

(3)在Toolbox中,选择/Classification/Post Classification/Confusion Matrix Using Ground Truth ROIs,选择分类结果,软件会根据分类代码自动匹配,如不正确可以手动更改。点击OK后选择报表的表示方法(像素和百分比),点击OK,就可以得到精度报表。

图2.9分类精度评价混淆矩阵

下面对混淆矩阵中的几项评价指标进行说明:

• 总体分类精度

等于被正确分类的像元总和除以总像元数。被正确分类的像元数目沿着混淆矩阵的对角线分布,总像元数等于所 有真实参考源的像元总数,如本次精度分类精度表中的Overall Accuracy = (1849/2346) 78.8150%。

• Kappa系数

它是通过把所有真实参考的像元总数(N)乘以混淆矩阵对角线(X_{KK})的和,再减去某一类中真实参考像元数 与该类中被分类像元总数之积之后,再除以像元总数的平方减去某一类中真实参考像元总数与该类中被分类像元 总数之积对所有类别求和的结果。

$$\kappa = \frac{N \sum_{k,k} - \sum_{k} x_{k,k} x_{k,k}}{N^2 - \sum_{k} x_{k,k} x_{k,k}}$$
Kappa计算公式

错分误差

指被分为用户感兴趣的类,而实际属于另一类的像元,它显示在混淆矩阵里面。本例中,林地有419个真实参考像元,其中正确分类265,12个是其他类别错分为林地(混淆矩阵中林地一行其他类的总和),那么其错分误差为12/419=2.9%。

• 漏分误差

指本身属于地表真实分类,当没有被分类器分到相应类别中的像元数。如在本例中的耕地类,有真实参考像元 465个,其中462个正确分类,其余3个被错分为其余类(混淆矩阵中耕地类中一列里其他类的总和),漏分误差 为3/465=0.6%

制图精度

是指分类器将整个影像的像元正确分为A类的像元数(对角线值)与A类真实参考总数(混淆矩阵中A类列的总和)的比率。如本例中林地有419个真实参考像元,其中265个正确分类,因此林地的制图精度是265/419=63.25%。

用户精度

是指正确分到A类的像元总数(对角线值)与分类器将整个影像的像元分为A类的像元总数(混淆矩阵中A类行的 总和)比率。如本例中林地有265个正确分类,总共划分为林地的有277,所以林地的用户精度是 265/277=95.67%。

注:监督分类中的样本选择和分类器的选择比较关键。在样本选择时,为了更加清楚的查看地物类型,可以适当的对图像做一些增强处理,如主成分分析、最小噪声变换、波段组合等操作,便于样本的选择;分类器的选择需要根据数据源和影像的质量来选择,比如支持向量机对高分辨率、四个波段的影像效果比较好。

练习数据下载:http://pan.baidu.com/s/1pJz8SER pdf操作文档下载:http://pan.baidu.com/s/1ntI9Ny5 讲课录屏下载:http://pan.baidu.com/s/1dD09ImT

115	12
喜欢	赠金笔

分享: 阅读(109271) | 评论 (47) | 收藏(42) | 转载(87) | 喜欢▼ |打印 | 举报/Report

前一篇: 【ENVI入门系列】10. 图像裁剪 后一篇: 【ENVI入门系列】12. 基于专家知识决策树分类

重要提示:警惕虚假中奖信息

评论

 huosf4719

 为什么我的计算可分离性不可以使用呢?

 2014-12-12 20:28
 回复(1)

 YOUNG2014的春天

 ご点个赞

 2015-3-11 15:28
 回复(0)

 用户3046393154

 老师你好,请问对高光谱数据用其它分类方法 (不用监督分类) 怎么产生随机点来检验分类精辉

 2015-6-20 21:53
 回复(0)

XingYe-Bank http://blog.sina.com.cn/s/blog_764b1e9d0102v22a.html [发评论]