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Abstract

Aquaculture continues to expand swiftly and remains the fastest-growing food indus-

try worldwide amidst ever-present threats from chronic stressors and emerging dis-

eases. Nutrition plays a pivotal role in the profitability and viability of the aquaculture

industry that steered a paradigm shift to therapeutic nutrition. Carotenoids, also

termed tetraterpenoids, have garnered considerable attention owing to their thera-

peutic attributes and immeasurable health benefits, which incited a surge in global

demand. These biological pigments are recognized to promote immune systems and

antioxidant defence mechanisms in both aquatic vertebrates and invertebrates. This

review brings forth existing scientific evidence and underscores the notable roles of

carotenoids as biologically active constituents with anti-stress and immunostimula-

tory potentials in farmed aquatic animals whilst explicating possible mechanisms of

action. Empirical data unequivocally established the modulatory functions of caroten-

oids on endogenous antioxidant enzymes, innate and adaptive arms of the immune

response, as well as the expression of multiple antioxidant and immune-related

genes. The comprehensive information presented is beneficial to deepen our under-

standing of the utilization of carotenoids as potent stress alleviators and immunosti-

mulants in cultured aquatic animals, which is translated into improved health.

Advancements in aquatic animal health and welfare could principally contribute to

reconstructing a more sustainable aquaculture industry. This article may be useful for

subsequent investigations towards further advances in research and innovation to a

greener blue revolution in solving the challenge of global food security.

K E YWORD S

antioxidant defence, immunity, metabolism, oxidative stress, pigment, reactive oxygen species

1 | INTRODUCTION

Aquaculture made its mark as the world's most dynamic and fastest-

growing livestock sector with a multibillion-dollar profit margin,

broadly fuelled by the ever-growing human population and demand

for animal protein. Today, aquaculture is rapidly expanding with a

compound annual growth rate (CAGR) of 5.3% yearly (2001–2018).1

Global aquaculture production attained another record high of 114.5

million tonnes in 2018 (valued at USD 263.6 billion), supplying more

than 60% of the total harvest weight of aquatic animals for human

consumption.1 Despite phenomenal growth, the industry has been

enduring recurring boom-and-bust cycles linked to devastating dis-

ease outbreaks with eventual production collapse. The outbreak of

threatening diseases is a primary constraint to the production of many

aquaculture species. Indeed, disease was listed ahead of all other

causes of production losses in the questionnaire for the Census of
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Aquaculture 2018.1 The World Bank estimates that aquaculture dis-

eases entail economic losses of more than USD 6 billion annually.2

Routinely, prophylactic treatments (e.g. antimicrobial therapeutic

agents or drugs) are adopted as a primary option in treating infectious

diseases.3,4 Unregulated and imprudent use of antimicrobials acceler-

ates the emergence of drug-resistant pathogens while inducing host

immunosuppression due to potential oxidative stress that arises fol-

lowing treatments.5–7 Moreover, intensive aquaculture has been

linked to numerous environmental and husbandry-related stressors,

posing challenges to the sector. Good nutrition, successful health

management and eco-friendly farming practices serve as the strongest

pillars for sustainable aquaculture.

Carotenoids or tetraterpenoids represent a diverse group of

organic pigments that are synthesized exclusively by plants, phyto-

plankton, photosynthetic bacteria and some species of archaea and

fungi. These pigments provide a broad variety of conspicuous hues

(e.g. orange, red and yellow) to various animals, fruits and leaves of

plants. Carotenoid pigments (e.g. astaxanthin, β-carotene, canthaxan-

thin, fucoxanthin and lutein) are renowned for commercial applica-

tions in food, cosmetic, nutraceutical, pharmaceutical and animal

feed industries; owing to their anti-oxidative and therapeutic

properties.8–10 High-performance compounded aquaculture feeds are

frequently integrated with carotenoids from natural and synthetic ori-

gins. Animals lack the capacity to biosynthesize carotenoids de novo

and thus rely upon dietary sources for these compounds (food-borne

carotenoids) or partly modified via metabolic reactions.11,12 The

fundamental roles of carotenoids in all photosynthetic organisms

include light absorption and photoprotection against photooxidative

stress while acting as precursors of plant hormones.13–15 In animals,

carotenoids serve critical functions as essential precursors to

vitamin A (retinol), antioxidants, photo-protectors, immunostimulants,

anti-inflammatories and growth promoters.16–18 The antioxidant

potency of carotenoids is of particular significance to aquatic animal

health, which augments the efficiency of immune responses and elicits

innate immune activation.19–22 Furthermore, as potent singlet oxygen

quenchers, carotenoids can potentially halt the toxic effects of reac-

tive oxygen species (ROS) generated during mounting host defence

activities without raising the associated costs of immunity.23,24 The

overproduction of ROS could conceivably entail host immunosuppres-

sion and severe oxidative damages since the immune response is a

costly physiological activity when initiated against foreign microorgan-

isms (non-self entities) or pathogenic processes.25,26 From this per-

spective, supplementation of carotenoids for a well-integrated

antioxidant system is imperative for enhanced stress tolerance and

immunity in cultured animals.

Recent progress infused direct insights into the biological roles of

carotenoids in signal transduction and expression of multiple antioxi-

dant and immune-related genes, particularly in aquatic vertebrates

and invertebrates.27–32 The aforementioned has prompted new

enthusiasm and investigation on the intricate interplay between carot-

enoids, antioxidant defence system and immunity; and how this may

be associated with disease aetiology and prevention in commercial

aquatic species. As a consequence, great advances in immunology and

animal health are anticipated with the rapid development and applica-

tion of such technologies in aquatic organisms. Research investigating

the multi-faceted roles of carotenoids in the stress tolerance and

immunoenhancement of aquatic organisms had thrived over the years

through well-controlled feeding trials and time-series studies; none-

theless, the information remained poorly assembled as a whole.16,24 It

is necessary, however, to incorporate these findings so that the

knowledge gained and implications of the outcomes are focalized.

This review seeks to explore and bring forth the available scientific

evidence on the beneficial application of carotenoids as stress allevia-

tors and immunostimulants in aquatic animals while elucidating possi-

ble mechanisms of action. More generally, the information expands

our knowledge of the anti-stress and immunomodulatory functions of

carotenoids. Opportunities and challenges are also addressed, along

with implications for future research.

2 | STRUCTURE OF CAROTENOIDS

The properties and natural functions of a carotenoid molecule are fun-

damentally dependent on its molecular or chemical structure. A sys-

tematic scheme has been exercised to define and delineate the

chemical structure of various carotenoids. Several hundred carotenoid

structures have been classified from a wide assortment of biological

systems. Most carotenoids typically contain a 40-carbon skeleton built

from eight isoprene units that are covalently linked together, forming

multiple conjugated double bonds (usually termed the ‘polyene chain’)
(Figure 1). This general structure (polyene chain) may be cyclized at

one or both ends of the molecule or possess various oxygen-

containing functional groups or hydrogenation levels, resulting in

structural diversity.33,34 Structurally, carotenoids have different termi-

nal groups at both ends of the principal polyene chain (Figure 2). The

long central chain of conjugated double bonds is primarily responsible

for the shape, coloration, chemical reactivity, spectral properties and

proper functioning of carotenoids.35–37 There exist two main groups

of carotenoids: carotenes and xanthophylls (Figure 3a,b). Carotenes

(e.g. α-carotene, β-carotene, ɣ-carotene, lycopene, neurosporene and

phytoene) are polyunsaturated hydrocarbons composed exclusively of

carbon and hydrogen. Contrarily, xanthophylls (e.g. astaxanthin, can-

thaxanthin, fucoxanthin, lutein, neoxanthin, violaxanthin and zeaxan-

thin) carry oxygen atoms in their structures (oxygenated carotenes).

Xanthophylls are amongst the essential components in the photosyn-

thetic tissues of plants. In nature, some xanthophylls are present as

glycosides, fatty acid esters, protein complexes and sulfates.13,38 Pres-

ently, approximately 50 types of carotenes and almost 800 types of

xanthophylls have been described.17,39

Additionally, apocarotenoids are a subclass of carotenoids, or

carotenoid derivatives, composing less than 40 carbon atoms derived

from the oxidative cleavage of C40 carotenoids (i.e. carotenes and

xanthophylls). Some carotenoids with 45 or 50 carbon atoms are col-

lectively known as higher carotenoids. Nearly 120 naturally occurring

apocarotenoids have been identified in plants and animals, while

about 40 higher carotenoids are present in archaea.17,39 Furthermore,
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carotenoids can exist as cis (Z) or all-trans (all-E) isomers depending

on the number of conjugated double bonds in their molecules, which

differ markedly in shape and size.40–42 In most cases, the all-trans con-

figuration is more prevalent in natural sources due to its relatively

higher stability, as the cis isomers of carotenoids are particularly vul-

nerable to oxidation. Carotenoids are lipophilic isoprenoid compounds

(hydrophobic molecules) present typically in cell membranes and lipo-

proteins. The lipophilicity of carotenoids directly impacts their absorp-

tion, distribution and metabolism in living organisms.13,36,43 Research

on the structure and properties of carotenoids has been ongoing for

many decades, and progress reflects advances in all areas of chemistry

and biochemistry. The structural characteristics of carotenoids are the

ultimate key to understanding their diverse functional roles and

applications.

3 | SOURCES, BIOAVAILABILITY AND
METABOLISM OF CAROTENOIDS

3.1 | Natural and synthetic sources

Experts have been actively investigating new biological sources of

carotenoids due to the exceptional qualities of these fascinating

molecules. Carotenoids are richly hued pigments that are ubiquitous

and, in general, wholly accountable for the striking colours of many

plants (including leaves, flowers, fruits and stems) and animals. More

than 1000 structurally different carotenoids of natural origins have

been isolated and characterized until recently.17,44 Prominent sources

of unique carotenoids are primarily represented by terrestrial and

marine plants but also by numerous marine organisms and simple

microorganisms (photosynthetic and non-photosynthetic), specifically

archaea, bacteria, fungi and yeast, with complex carotenoid metabo-

lism (Table 1).45–47 The deposition of carotenoids in animal tissues

truly reflects their dietary sources along the food chain, as they can-

not biochemically synthesize these compounds de novo.16,54 How-

ever, the contribution of animal-derived carotenoids (e.g. meat and

dairy products, seafood and crustacean by-products) must not be dis-

regarded, as these sources may provide a substantial quantity of

important carotenoids (e.g. astaxanthin, canthaxanthin, zeaxanthin

and lutein).55,56 Naturally sourced carotenoids are gaining traction

worldwide, directly driven by surging consumer demand and prefer-

ence for natural products, along with end-use applications, particularly

in the North American and European regions.57,58 Consequently,

global manufacturers have been actively pursuing the production and

commercialization of natural carotenoids at a lucrative pace with new-

age technologies.

F IGURE 1 General structure of a selected carotenoid and its terminal groups.

F IGURE 2 Various terminal groups present in carotenoids.
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Most commercialized carotenoids are synthetically derived from

chemical sources (e.g. inorganic chemicals, organic acids and

petrochemical-derived precursors) with inexpensive labour, negating

the requirement of biological organisms and subsequent costs of har-

vesting and extraction.16,59,60 Chemically synthesized carotenoids

constitute 90% of the current global production, whereas natural

counterparts account for the remaining 10%. Both the Dutch State

Mines (DSM) and the Baden Aniline and Soda Factory (BASF) are the

leading global manufacturers in the synthetic market, with more than

60% production. Synthetic carotenoids, nonetheless, exhibit less

F IGURE 3 Chemical structures of (a) typical carotenes and (b) typical xanthophylls

LIM ET AL. 875

 17535131, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12767 by H

enan N
orm

al U
niversity, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



efficacy in terms of their biological functions and therapeutic proper-

ties, despite a speedier production at considerably lower costs.57,61–63

The market price of microalgal-derived pigments, for instance, could

fetch up to USD 7500 kg�1, while synthetic equivalents may be pro-

portionately cheaper at half the price (approximately USD 250–

3000 kg�1).64,65 Secondary carotenoids, such as canthaxanthin and

astaxanthin, are amongst the priciest pigments on the market. Chemi-

cal synthesis for the production of synthetic carotenoids on an indus-

trial scale involves a variety of generally complex reaction processes

(i.e. dehydration and elimination, carbonyl condensation, Wittig reac-

tion and the selective cross-coupling reaction) that often induce the

formation of hazardous wastes.57,66,67 Such wastes could potentially

pose a severe threat to human and environmental health upon indis-

criminate disposal. The synthetic forms of carotenoids, with the

potential carryover of synthesis intermediates or impurities, are only

permitted for commercial applications in the animal feed industry

(aquatic animals and poultry) and have not been approved exclusively

for direct human consumption thus far.65,68,69 These undesired

adverse effects have reverberated in many discussions, which raised

public concerns associated with environmental pollution, food safety

(inherent toxicity) and sustainability, even though chemical synthesis

can supply a steady source of carotenoids.57,64,70 Hence, natural

carotenoids represent a much favoured and premium option for ani-

mal nutrition or direct human consumption.

The global market has witnessed remarkable growth in the pro-

duction of carotenoids to cater to the extraordinarily high demands

from multiple industries comprising food, cosmetics, aquaculture,

nutraceutical and pharmaceutical, over the last decade. Carotenoids

are of great dietary importance and perform a versatile role in contrib-

uting to therapeutic effects and health benefits with myriad applica-

tions. These include anti-inflammatory, immune system boosting,

anti-cancer, anti-ageing, sun proofing, anti-diabetic activities and

amongst others, owing to their impressive antioxidant capacity.16,71,72

Moreover, scientific efforts devoted through the years persistently

substantiated the instrumental role of carotenoids in promoting

animal health (e.g. various improvements in stress tolerance, innate

immunity, immune-related gene expression and disease resis-

tance).19,22,28,73,74 The future of the global carotenoid market appears

promising, which is likely to expand steadily from USD 1.5 billion in

2020 to USD 2 billion by the end of 2026, registering a compound

annual growth rate (CAGR) of 4.2% during the forecast period.75

Amongst the available carotenoids, the market is dominated by astax-

anthin, shared fairly by β-carotene, lutein, lycopene and zeaxanthin, in

light of their established functions. Some carotenoids, including can-

thaxanthin and fucoxanthin, are beginning to penetrate the market

with the potential scope for economic importance due to recent sci-

entific discoveries on their pharmacological effects and health bene-

fits.63,75 Most carotenoid producers are currently emphasizing

sustained growth over the long-term future, as the impacts of the

unprecedented COVID-19 pandemic crisis are being felt globally

across operations in multiple dimensions. Despite that, the carotenoid

industry can play a significant role as the driving force of economic

recovery and is most anticipated to witness potential opportunities

over the short-term period. The market continues to build momentum

with biotechnological advancements and the ever-expanding demand

for carotenoids in the healthcare industry and animal feed production.

3.2 | Bioavailability and metabolic aspects

Humans and animals are incapable of biosynthesizing carotenoids,

and, hence, these pigments must be acquired exclusively from dietary

sources. The bioavailability of carotenoids merely refers to the pro-

portion of consumed carotenoids that enters the systemic circulation

in their active forms to be readily absorbed and utilized by the host

body. Bioavailability is an intricate process involving separate phases,

including digestion (liberation), gastrointestinal absorption, transport,

tissue distribution, metabolism and bioactivity.76,77 Conversely, the

bioaccessibility of carotenoids has been described as the fraction or

portion of the ingested carotenoids that are released from the food

matrix and thus become potentially available for gastrointestinal

absorption.77,78 Bioaccessibility is part and parcel of bioavailability,

and both increase simultaneously. The latter, in particular, serves as a

key concept for assessing the bioactivities and health benefits of

carotenoids. The bioavailability of carotenoids is complicated by multi-

ple factors that influence their digestion, absorption, transport and

storage in aquatic animals. Several factors include but are not limited

to the following: type of carotenoid and their origin (synthetic or natu-

ral), the interaction between carotenoids, dietary source (natural or

formulated diet), as well as the dose and route of administration.79,80

TABLE 1 Common types and prominent sources of carotenoids

Pigment Colour Source References

Astaxanthin Pink-red Crustacean, microalgae and yeast 16

α-carotene Orange Terrestrial plants 48

β-carotene Yellow-orange Cyanobacteria, microalgae and terrestrial plants 49

Canthaxanthin Orange-red Crustacean, microalgae, archaea, bacteria and fungi 8

Fucoxanthin Brown Diatoms, brown macro- and microalgae 50

Lutein Yellow-orange Terrestrial plants 51

Lycopene Red Terrestrial plants 52

Zeaxanthin Yellow Terrestrial plants 53

876 LIM ET AL.
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Specific efforts have been made over the years within these scenarios

in aquatic species to mimic identical strategies established to explore

carotenoid bioavailability in mammals.81–84 Nevertheless, data are not

adequately comparable to enable a comprehensive systematic com-

parison of outcomes. Beyond simple consideration, exogenous com-

ponents linked to the food matrix and structure and how the food is

processed are influential in dictating the bioavailability of carotenoids.

Carotenoids ought to be liberated from the food matrix in absorbable

forms and transferred into the systemic circulation to exert their bio-

logical activities after ingestion. Delivery strategies, namely nanoemul-

sion and nanoencapsulation systems, offer great avenues to bypass

the limiting factors on the bioavailability of carotenoids, usually

achieving a great deal of improvement in absorption.77,85–87 The

expeditious development of sophisticated techniques, such as the sta-

ble isotope dilution method, permits an accurate yet precise assess-

ment of carotenoid activities.88,89 Comprehending the bioavailability

of carotenoids delivers a solid foundation for an effective design strat-

egy and critical interpretation of dietary interventions in aquatic ani-

mals. In defining future approaches, it is imperative to grasp the

underlying mechanisms by which the bioavailability of carotenoids

can be altered and leveraged for enhanced health benefits.

Carotenoids are substantially hydrophobic and lipid-soluble

metabolites, bound solely to circulating plasma lipoproteins, alongside

animal fats and cholesterol, determined in large part by their structure

and physicochemical properties.36,43 Hence, as with their absorption,

carotenoids pursue an identical absorptive pathway to other lipid

components. Poor solubility in the aqueous milieu of the gastrointesti-

nal tract impedes their absorption nonetheless.77,90 The association

with dietary lipids (e.g. cholesterol and fatty acids) has been documen-

ted to promote digestion, intestinal absorption and metabolism of

carotenoids in animals,16,91,92 particularly so in humans.76,77 Although

mammals and other non-mammalian vertebrates typically absorb and

deposit carotenoids in their body tissues, many crucial aspects of

metabolism remain unresolved. Various research unravelled wide vari-

ations in the absorption and metabolism of carotenoids from one

aquatic species to another, while some are not absorbed in any way.

Such disparities can be explained by the properties of the carotenoid

in question (e.g. polarity, hydrophobicity and isomerism) and also host

factors (e.g. species, growth stage, diet and genetics).16,83,93–95 The

differential distribution in terms of specific tissue uptake of caroten-

oids from the plasma and retention, along with the governing selective

mechanisms, has not been clarified until the present. New investiga-

tions evidenced the intricacy of endogenous bioconversion and depo-

sition of carotenoids in aquatic animals, which for the most part, was

related to structural isomerism.95,96 It was not until recently that

researchers began to characterize and elucidate the diverse range

of genes and pathways involved in the metabolism and deposition of

exogenously derived carotenoids.90,97–99 Exciting varieties of

enzymes and transporter molecules linked to carotenoid-based integ-

umentary colouration in fish were suggested to be genetically con-

trolled, analogous to findings in mammals and avians.94,100–102

Accordingly, the main regulators in the molecular mechanisms of

carotenoid utilization and storage amongst living animals can be

potentially enhanced through genetic improvement.103–105 Several

articles thus far defined the fundamental mechanisms of absorption,

transport, tissue uptake and metabolism of this broad family of mole-

cules in some aquatic species and humans.16,43,79,106,107 The colourful

world of carotenoids inspired classic research on their metabolic

aspects in aquaculture species. Surprisingly, experimental studies are

somewhat scarce, as a whole, with only a handful on salmo-

nids16,82,92,108 and some crustaceans.95,96,109 The physiological rele-

vance of such studies still needs to be entirely established for a wide

variety of domesticated species. Knowledge gaps, however, still exist

concerning the metabolic fate of carotenoids and their potential to

influence biological processes while serving as modulators of disease

in aquatic animals. The continuous development of assessment tech-

niques (e.g. molecular and structural biology), robust analytical

approaches for identification and quantification (e.g. protein, gene and

metabolite levels), as well as the adoption of ideal animal models for

thorough mechanistic investigations, are required to extend our pro-

found understanding of the subject.

4 | SAFETY ASPECTS OF CAROTENOIDS

Aquaculture stands as one of the most environmentally sustainable

alternatives for food security and human nutrition. Good nutrition is

the foundation of aquaculture production systems and is imperative

to the economical production of healthy, top-quality aquatic products.

Supporting evidence has emerged concerning the biological functions

of carotenoids in aquatic animals, which are necessary to ensure opti-

mal development, reproductive success and excellent health.18,24,110

Most importantly, the desired pigmentation rendered by carotenoids

as feed additives contributes to characteristic quality criteria for mar-

keting aquaculture products and satisfying consumer demand and

acceptability. Safety and regulatory requirements of carotenoids vary

in different countries and regions, being governed by a region-specific

authority. The safety of carotenoids in animal nutrition, along the feed

and food chain, is systematically evaluated by regulatory agencies,

including the Food and Drug Administration (FDA) and the European

Food Safety Authority (EFSA), ensuring they are innocuous before

being permitted for use.56,63 The use of such additives is held under

constant observation and is subject to reassessment by the agencies

should the need arises.111,112 These safety evaluations lead to the

publication of scientific opinions (publicly available at https://www.

efsa.europa.eu and https://www.fda.gov) defining the safety aspects

of the pigments (i.e. risks to target species, consumers and the envi-

ronment) under their proposed conditions of use, including under cer-

tain circumstances the acceptable intake.

A series of scientific opinions dealing with the safety and efficacy

of several carotenoids (i.e. astaxanthin, β-carotene, canthaxanthin and

adonirubin) have been previously delivered by the EFSA's Panel on

Additives and Products or Substances used in Animal Feed (FEEDAP)

for crustaceans and salmonids, as well as other fishes.111,113–117

Based on the former assessments, the FEEDAP Panel declared that

the evaluated carotenoids are safe and efficacious as pigmenting

LIM ET AL. 877
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agents in aquatic species (up to 100 mg kg�1 diet). The panel further

testified that the proposed use of the pigments is of no particular con-

cern for the health and safety of consumers nor constitutes any addi-

tional unintended or harmful ecological risks. Notwithstanding, the

bulk of experimental data from various feeding trials through recent

years afforded solid evidence that dietary carotenoids are generally

innoxious and well-tolerated by many aquatic species, even at larger

doses as purified supplements. Historically, carotenoids have been

incorporated into animal nutrition for decades without any reports of

adverse effects on animal performance and health. Contrariwise, the

lack of adequate pigments may negatively influence their general per-

formance. These were incisively demonstrated in numerous commer-

cially important species such as the kuruma shrimp, Marsupenaeus

japonicus,118,119 oriental river prawn, Macrobrachium nipponense,120

ridgetail white prawn, Exopalaemon carinicauda,121 Asian seabass,

Lates calcarifer,11,19,22 Atlantic cod, Gadus morhua,122 blood parrot

cichlid, Cichlasoma citrinellum x Cichlasoma synspilum,123 rainbow

trout, Oncorhynchus mykiss,73,124 red porgy, Pagrus pagrus,125,126 and

yellow catfish, Pelteobagrus fulvidraco,20 supplemented with individual

or a blend of carotenoids in vivo (up to 400 and 600 mg kg�1 diet in

fish and crustaceans, respectively). Some investigators, nonetheless,

emphasized that carotenoid residues in animal flesh could represent a

prominent source of carotenoids for promoting human health; as an

ideal alternative to dietary supplements.127–129 Acute and sub-chronic

toxicity studies of some carotenoids (i.e. astaxanthin, β-carotene,

fucoxanthin and lutein) performed in rodents had consistently

reported the absence of relevant behavioural alterations, systemic

toxicity and mortality through detailed clinical observations (adminis-

tered gavagely up to a daily dose of 2000 mg kg�1 body

weight).130–135 Several investigations also raised no specific concerns

for teratogenic and genotoxic potentials of carotenoids

(i.e. astaxanthin and zeaxanthin) that could lead to congenital abnor-

malities in rodents (administered orally up to a daily dose of

750 mg kg�1 body weight).133,134,136 Similarly, no deleterious side

effects of carotenoids have been identified thus far in healthy human

subjects when provided sufficiently, which strongly supports the

safety profile of the pigments for epidemiological studies and clinical

trials.72,137–139 For instance, a review on the safe dosing of astax-

anthin has been conducted earlier from 87 human intervention stud-

ies (with oral doses ranging from 12 to 45 mg day�1), and none of

which found safety concerns.140 Feng et al.141 through meta-analysis,

suggested that lutein supplementation is safe in humans (10–

20 mg day�1) and may be beneficial to reduce the risks of age-related

macular degeneration (AMD). Moreover, another study indicated no

apparent detrimental health effects in men upon oral administration

of 25 mg lycopene day�1 for 12 weeks through a randomized,

double-blind, placebo-controlled trial.142 Much information mani-

fested that dietary carotenoids exert protective actions against ath-

erosclerotic cardiovascular diseases (CVDs), cancer, chronic

degenerative diseases, cognitive impairments, rheumatoid arthritis,

ultraviolet B-induced erythema and depressive disorders in humans

via their potential as a therapeutic agent to inhibit oxidative

stress.138,143,144 Pharmacological and mechanistic data had most

recently confirmed the bright future of carotenoids (i.e. astaxanthin

and fucoxanthin) in alleviating the complications associated with

COVID-19.145,146 Given the above, it is indisputable that an adequate

intake of carotenoids has been found safe in animals and human sub-

jects without any identifiable negative consequences while offering

multiple health benefits.

5 | BIOACTIVE CAROTENOIDS AS
ANTIOXIDANTS

Carotenoids are amongst nature's most potent biological antioxidants,

assuming a central role in neutralizing the harmful effects of ROS, thus

prohibiting oxidative damage related to all living organisms. These bio-

active molecules may act directly from scavenging free radicals

(e.g. OH•, O2
•–, HO2

•, HOO• and ROO•) to promoting oxidative

stress defences or resistance in the host at all levels of complex-

ity.45,147–149 Antioxidative attributes of carotenoids are principally

governed by the extensive system of conjugated double (C C) bonds

in their polyene chains.150–152 The structural feature of conjugated

double bonds leads to a high reducing potential and antioxidant activ-

ity of these tetraterpene compounds.153,154 Any structural modifica-

tions, such as the number of conjugated double bonds alongside the

addition of oxygen-containing functional groups, could altogether

alter the chemical reactivity (i.e. quenching capability and antioxidant

capacity) of a carotenoid molecule.15,155 The antioxidative function of

carotenoids is also dependent on their immediate environment and

the nature of the oxidizing free radicals.35,156 There are several mech-

anisms of carotenoid action as an antioxidant, including: (i) serving as effi-

cient physical quenchers of excited singlet molecular oxygen (1O2)

(Equations 1 and 2)157–160; (ii) reacting rapidly with free radicals of differ-

ent origins and convert them into more stable compounds or non-radical

products (Equations 3–6)161–164; (iii) preventing the formation of free

radicals through the interruption of free radical-induced chain reactions

and terminating free radical oxidations165–167; and (iv) acting as metal

chelators by facilitating the conversion of iron and copper derivatives

into stable chelate complexes (harmless molecules).168–170 Mechanisms

of carotenoid action as physical quenchers of singlet molecular oxygen

and free radical scavengers are represented by the followings:

• Physical quenching of 1O2 by a carotenoid (Crt) molecule that

involves the removal of excitation energy ensued by thermal

deactivation

Crtþ 1O2 ! 3Crt� þ 3O2 ð1Þ

3Crt� !Crtþheat ð2Þ

• Electron transfer reaction between free radicals (R•) and Crt lead-

ing to the formation of a carotenoid radical anion (Crt•–) or cation

(Crt•+)
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CrtþR • !Crt • – þRþ ð3Þ

CrtþR • !Crt •þ þR– ð4Þ

• The mechanism of radical adduct formation (RCrt•)

CrtþR • !RCrt • ð5Þ

• Hydrogen atom transfer or abstraction resulting in the formation

of a neutral Crt radical (Crt•)

CrtþR • !RHþCrt • ð6Þ

Numerous investigations through the years have focused on the

antioxidant properties of carotenoids as potent 1O2 quenchers and

free radical scavengers with reference to their molecular struc-

tures.37,171 The availability of novel carotenoids isolated from various

plants and microorganisms facilitated the continuous development of

carotenoid research to define their functions, both in vivo and in vitro.

Much progress has been made in the genetic manipulation of caroten-

oid biosynthesis and composition within organisms, which offers

excellent opportunities for studying the antioxidant roles of caroten-

oids and their actions directly in living cells.172–176 Notwithstanding,

there are still many other biochemical and physiological functions to

be linked to carotenoids owing to their structural diversity.

6 | IMMUNITY IN FISH AND AQUATIC
INVERTEBRATES

The immune system is an interconnected network of broadly distrib-

uted biological processes of splendid complexity that safeguard an

organism against infections.177,178 On the whole, there is a height-

ened interest in comprehending the immune functions of aquatic ani-

mals to develop and protect both wild and farmed populations

sustainably. A deeper understanding of these immune processes is

paramount for the betterment of aquaculture practices and the pre-

vention of aquatic diseases in commercial species. Profound insights

into the immune responses of aquatic animals accelerated the novel

discovery and development of various prophylactic and therapeutic

solutions, leading the way to robust immunization and immunomodu-

lation strategies.179–181 Moreover, marked advances in genetic and

genomic sciences have fostered new progressions within veterinary

immunology.182–184

Conceptually, all aquatic animals are endowed with a primitive

system of defence, which is further classified into innate (non-specific)

and adaptive (specific or acquired) immunity beyond structural and

chemical barriers to pathogens. Constitutive mechanisms of innate

immunity provide the front line of host defence that inhibits the entry

or annihilates infiltrating pathogens almost instantly in a non-specific

manner. Innate immunity is well elucidated as a primitive form of host

defence against pathogenic invasion and functions as a fundamental

defence mechanism.185,186 Unequivocally, the innate immune system

plays an instructive role in activating and determining the nature of its

adaptive counterparts.187,188 The adaptive immune responses, in con-

trast, are tailored to repel specific or unique non-self pathogens (anti-

gen-specific recognition) while acting as the second line of host

defence.189,190 Both overlapping immunological mechanisms occur via

the collective interaction of the cellular and humoral components. The

adaptive immune system establishes immunological memory after a

previous initial exposure or response to a specific pathogen, thus

delivering enhanced responsiveness and long-term protection against

recurrent infections. Nonetheless, the capacity for immunological

memory is classically believed to be less complex in the innate

defence mechanism, which has been much debated in recent

years.191–193 Together, the innate and adaptive immune systems

orchestrate an extremely close communication to improve antimicro-

bial host defence, despite distinct differences in their mechanisms and

properties. Much of the previous work has focused on the develop-

mental aspects of the immune systems in fish and aquatic

invertebrates.194–196 Noteworthy progress has been achieved in the

characterization of diverse immune mechanisms and path-

ways.195,197–199 However, knowledge gaps in numerous immune

mechanisms, including cellular and molecular basis, of aquatic animals

persist, and the available information differs according to species. The

complete development of immunology as a scientific discipline

remains equitably incorporated in both fundamental and clinical

research.

Teleosts are by far the most speciose (boasting almost 30,000

species) of any living vertebrates today, which have conceivably

undergone rapid adaptive radiations in the evolutionary emergence of

vertebrates, primarily driven by ecological and morphological dispar-

ity.200,201 Enhanced knowledge of fish immune systems heralded

comparative outgroups for understanding the immune system of

higher vertebrates over evolutionary time.202,203 In general terms, the

structural and functional organization of the piscine immune system is

physiologically analogous to those in other vertebrates, albeit less

evolved and with some discrepancies (mainly due to body compart-

ments, cellular organization and poikilothermic nature).202,204 Teleosts

have all the vital organs dedicated to immune defence, while regarded

as the earliest class of vertebrates with all known essential elements

of innate and adaptive immunity, though with some specializations

and unique attributes.180,205 Fish are capable of deploying effective

host defence mechanisms through early embryonic development. The

innate immune system of teleosts is broadly separated into three

compartments composing the mucosa-associated lymphoid tissues

(gills, skin and gut) (local barriers), as well as cellular and humoral rep-

ertoires (systemic responses).185,186 Cellular components of the innate

immune system of teleosts consist of assorted cell types, including

granulocytes, monocytes, natural killer cells and dendritic cells, engi-

neered to facilitate cell-mediated immunity. Moreover, humoral fac-

tors comprise mainly natural antibodies, antimicrobial peptides
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(AMPs), chemokines, cytokines, lytic enzymes and various compo-

nents of the complement pathways, amongst others.186,206 The innate

immunity in teleosts is served by a restricted number of germ-line

encoded pattern recognition receptors (PRRs) that identify pathogen-

associated molecular patterns (PAMPs) (i.e. prevalent biomolecules of

pathogens, such as lipopolysaccharides, glycoproteins, peptidoglycans

and single- or double-stranded RNA) while detecting endogenous

danger signals from malignant tissues or apoptotic cells.207,208 Adap-

tive immune responses of teleosts, on the other hand, are firmly regu-

lated by the crosstalk mechanisms between cellular and humoral

responses that involve an intricate network of highly specialized sys-

temic cells, biochemical messages, proteins and genes. The adaptive

immune system mounts a full-fledged response through the genera-

tion of T-cell receptors (TCRs), major histocompatibility complex

(MHC), immunoglobulins (Igs), as well as B and T lymphocytes.185,189

These components are highly specific to the antigens of foreign path-

ogens. The proliferation and activation of B and T lymphocytes are

crucial factors that trigger the initiation of the adaptive immune sys-

tem. Nevertheless, the initiation of adaptive immunity is commonly

delayed due to requirements for cellular proliferation, protein synthe-

sis and specific receptor selection but is assuredly effective for long-

lasting immunity. Comprehensive descriptions of teleost immunity are

available in past literature devoted completely to surveying all facets

of fish immunology.186,203,209,210 There is an expeditious expansion of

studies employing fish models in comparative immunology to improve

the understanding of fish immunity and the evolution of immune sys-

tems. Significant contributions from molecular genomic research and

integrations of multi-omics strategies to identify previously unrecog-

nized functions and unresolved paradigms for piscine immune reac-

tions can be anticipated henceforth.

Contrariwise, invertebrates respond, whether local or systemic,

through a non-adaptive innate immunity. Invertebrates possess inar-

guably less developed adaptive immune responses as they depend

more readily on their potent and rather complex innate immune sys-

tem to contain invading pathogens.24,211 Generally, a multitude of cel-

lular and humoral responses partake in defending these organisms

from pathogenic agents that successfully compromised their exoskele-

tons, gastrointestinal tracts and internal tissues.212 A plethora of infor-

mation is available on the extent of the involvement of distinct cell

types in invertebrate defence reactions.196,211 Typically, the cellular

components of the invertebrate immune system are represented by

an assembly of freely circulating and sessile blood cells (coelomocytes

and hemocytes) that are solely responsible for cell-mediated immunity

(i.e. phagocytosis, melanization or encapsulation, generation of reac-

tive oxygen species, as well as the production of antimicrobial pep-

tides and hydrolytic enzymes).213,214 The sessile phagocytic cells may

be scattered throughout body tissues or localized in haematopoietic

organs. In humoral responses, invertebrates utilize an assortment of

soluble factors or effector molecules secreted by the cellular compo-

nents, such as AMPs, agglutinins, lectins, complement factors and

some hydrolytic enzymes.215,216 These factors act in synergy with

phagocytes to exterminate noxious microorganisms and other foreign

agents that have intruded into the host. Recent molecular and geno-

mic studies uncovered astonishingly diversified immune molecules

and PRRs.198,207,217,218 Most aquatic invertebrates have well-

developed alternative approaches to initiate complex immune

processes, although lacking a great deal of the prominent features of

vertebrate immunity.219,220 Consequently, invertebrates can adapt

and thrive in a wide variety of ecosystems and, in some instances,

under extreme conditions. Apprehending the broad armamentarium

of invertebrate body defences is vitally important as these animals

continue to confront all sorts of challenges to self-integrity from their

pathogen-laden habitats. Research interests in the immune system of

invertebrates have been somewhat astounding over the past decade,

spurred entirely by their economic significance in global aquaculture

and phylogenetic position, as well as evolutionary history.

7 | BIOACTIVITY AND RELATED
MECHANISMS OF CAROTENOIDS ON THE
STRESS TOLERANCE AND IMMUNITY OF
AQUATIC ANIMALS

7.1 | Robust modulation of the antioxidant system

The antioxidant defence or antioxidative system is a multilevel and

complex network that counteracts and regulates endogenous cyto-

toxic ROS, which is deemed paramount in the life activities of aquatic

animals. All animals subsisted in ecologically diverse environments,

confronted with multiple stressors, by altering their physiological attri-

butes, specifically antioxidant systems.221,222 The primary enzymatic

components (antioxidant enzymes) of the antioxidant defence grid

comprise catalase (CAT), glutathione peroxidase (GPx) and superoxide

dismutase (SOD).223,224 These molecules collectively work against

superoxide radicals: reduced into hydrogen peroxide by SOD and fur-

ther converted into water and molecular oxygen by CAT and

GPx.24,225 Structural and functional features of antioxidant enzymes

appear exceptionally well-conserved across aquatic vertebrates and

invertebrates.24 Reactive oxygen species are physiologically relevant

molecules perpetually generated by living cells as normal cellular met-

abolic byproducts of oxidative metabolism. Strictly speaking, ROS per-

form essential roles in host immune responses, gene transcription and

signal transduction.28,226 The fine-tune of ROS homeostasis is

ensured by the enzymatic mechanism of the antioxidant system dur-

ing physiological aberrations. Nevertheless, the excessive proliferation

of ROS induced by oxidative stress can cause pathological damage to

tissues and organs while irreversibly impairing DNA, proteins and

lipids, with adverse consequences on host cellular functions if homeo-

stasis is not restored.221,227 Chronic oxidative stress frequently leads

to an elevated risk of negative health outcomes and the prevalence of

animal diseases. In-depth studies on antioxidant activity ushered in

new lines of research in aquatic physiology, forging novel scientific

knowledge that benefits numerous aspects of animal husbandry and

artificial propagation.
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Comparative investigations established the dual role of caroten-

oids in antioxidant defence systems of various aquatic species, i.e. as

potent ROS scavengers while also exerting specific stimulatory effects

on the activities of enzymatic antioxidants (Table 2). One primary role

is explicitly associated with their antioxidant capacities to directly

scavenge ROS, thus averting a dynamic imbalance between pro- and

anti-inflammatory status.18 This balance is crucial for regulating

oxidative stress, predominantly linked to inflammatory responses.

Accordingly, carotenoids could effectively assume the function of

antioxidant enzymes (as a compensatory response to ROS) whilst

reducing their relative activities and physiological costs of production.

The synthesis of antioxidant enzymes, including each enzyme-catalyse

event, typically requires investments from anabolic and catabolic pro-

cesses within hosts (e.g. escalated amino acid assimilation and

TABLE 2 Effects of carotenoids on antioxidant defence systems in various aquatic species

Carotenoid

Source and

inclusion level Species Response References

Astaxanthin Synthetic;

50–100 mg kg�1 diet

Rainbow trout

(Oncorhynchus mykiss)

" total antioxidant capacity;

# activities of CAT and SOD

228

Natural;

400 mg kg�1 diet

Blood parrot cichlid

(Cichlasoma citrinellum

� Cichlasoma synspilum)

" total antioxidant capacity;

# activities of CAT and SOD

123

Synthetic;

25–50 mg kg�1 diet

Large yellow croaker

(Larimichthys crocea)

" total antioxidant capacity;

# activity of SOD

229

Synthetic;

50–200 mg kg�1 diet

Northern snakehead

(Channa argus)

" activities of CAT, GPx and SOD 230

Natural;

91 mg kg�1 diet

Leopard coral trout

(Plectropomus leopardus)

" total antioxidant capacity;

" activities of CAT, GPx and SOD

231

Synthetic;

30–60 mg kg�1 diet

Swimming crab

(Portunus trituberculatus)

# activities of CAT and SOD 232

Natural;

68 mg kg�1 diet

Chinese mitten crab

(Eriocheir sinensis)

# total antioxidant capacity;

# activity of SOD

233

Synthetic;

160 mg kg�1 diet

Pacific white shrimp

(Litopenaeus vannamei)

" total antioxidant capacity;

" activity of SOD

234

Synthetic;

40–160 mg kg�1 diet

Pacific white shrimp

(Litopenaeus vannamei)

" total antioxidant capacity;

# activities of CAT and SOD

32

β-carotene Natural;

105 mg kg�1 diet

Pacu

(Piaractus mesopotamicus)

# activities of CAT and SOD 235

Natural;

150–200 mg kg�1

diet

Yellow catfish

(Pelteobagrus fulvidraco)

" total antioxidant capacity;

" activities of CAT and SOD

20

Natural;

50 mg kg�1 diet

Nile tilapia

(Oreochromis niloticus)

" total antioxidant capacity;

" activities of CAT, GPx and SOD

30

Synthetic;

100–500 mg kg�1

diet

Pacific white shrimp

(Litopenaeus vannamei)

" total antioxidant capacity;

" activity of SOD

236

Canthaxanthin Synthetic;

25 mg kg�1 diet

Rainbow trout

(Oncorhynchus mykiss)

" activities of GPx and SOD 73

Synthetic;

100–120 mg kg�1

diet

Chinese soft-shelled turtle

(Pelodiscus sinensis)

" total antioxidant capacity;

" RNA expression levels of antioxidant

genes (CAT and SOD2)

237

Synthetic;

50–400 mg kg�1 diet

Pacific white shrimp

(Litopenaeus vannamei)

" total antioxidant capacity;

# activities of CAT and GPx

238

Lutein Natural;

100 mg kg�1 diet

Marbled spinefoot rabbitfish

(Siganus rivulatus)

" total antioxidant capacity;

" activities of CAT and GPx

239

Natural;

50–200 mg kg�1 diet

Oriental river prawn

(Macrobrachium nipponense)

" total antioxidant capacity;

# activities of CAT and SOD

120

Natural;

62.5–75 mg kg�1 diet

Pacific white shrimp

(Litopenaeus vannamei)

# total antioxidant capacity;

# RNA expression levels of

antioxidant genes (CAT and GPx)

29

Abbreviations: CAT, catalase; GPx, glutathione peroxidase; RNA, ribonucleic acid; SOD, superoxide dismutase; SOD2, superoxide dismutase 2.
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metabolic rate).240,241 Such additional resources in this regard are allo-

cable to other competing physiological processes (primarily immune

activation). Compelling evidence revealed a reduced need for endoge-

nous antioxidant enzymes in different fishes when supplemented with

dietary carotenoids, but at the same time, enhancing their overall anti-

oxidant status.123,228,229,235 These authors proposed that carotenoids

are comparatively more potent free radical quenchers than antioxi-

dant enzymes and, as such, superseded their functional importance.

The results were consistent with recent discoveries in several crusta-

ceans, in which dietary carotenoids improved their total antioxidant

status while lowering the activities of CAT, GPx and SOD.32,120,232,238

Correspondingly, the RNA expression levels of antioxidant genes

(CAT, GPx and SOD) were observed to be considerably lower in the

hepatopancreas of the Pacific white shrimp (Litopenaeus vannamei)

when fed lutein-supplemented diets (62.5–75 mg kg�1) up to

56 days.29 Moreover, in some instances, carotenoids can potentially

diminish oxidative stress by swiftly boosting the levels and actions of

endogenous antioxidant enzymes. Several available reports contradic-

torily documented the prominent role of carotenoids in rapidly

encouraging the activities of endogenous antioxidant enzymes of

some fishes and crustaceans, which resulted in much enhanced anti-

oxidant capacity.20,30,73,230,231,234,236,239 Wang et al.237 likewise

reported an induced antioxidant capacity and upregulated expres-

sion of antioxidant genes (CAT and SOD2) in the canthaxanthin-fed

soft-shelled turtle (Pelodiscus sinensis). In this context, it should be

reasonably fair to infer that the interactions between carotenoids

and antioxidant enzymes might be, to a large extent, influenced by

environmental or pathological conditions, together with other

physiological aspects, but this warrants clarification. Babin et al.23

had earlier described the interaction of supplemental carotenoids

with antioxidant enzymes in an amphipod (Gammarus pulex) while

emphasizing the potential significance of carotenoids in the evolu-

tion of antioxidant mechanisms of the crustacean. Therefore, in

both ways, supplemented carotenoids grant immeasurable benefits

to the antioxidant defence systems of aquatic animals. This is par-

ticularly pertinent for animals reserving immense quantities of

carotenoids in their body tissues. A robust antioxidant status gen-

erally translates into a stronger host immunity, as both are closely

interrelated. Given the manifestation of a specific interplay

between carotenoids and endogenous antioxidant enzymes, it

would be insightful to delve further into the synergistic influences

of multiple carotenoids and the fundamental molecular mechanisms

accountable for the interactions, including explicit functional col-

laboration with immunity.

7.2 | Induction of stress tolerance

Stress responses compose coordinated suites of biological and physio-

logical processes to any perceived threats that disrupt homeostasis.

These responses are generally adaptive, but prolonged exposure to

stress (chronic) impairs the health and welfare of animals, predisposing

them to severe consequences, such as poor growth performance,

weakened immune system, susceptibility to infectious diseases and

eventual mortality.242,243 Intensive aquaculture practices under artifi-

cial settings or conditions have witnessed an insurgence of multiple

environmental and husbandry stressors (e.g. biological, physical,

chemical and procedural). Thus, it appears necessary to recognize

what induces stress in aquatic animals, particularly concerning physio-

logical mechanisms and responses (molecular and cellular), which

steers to the transformation in behavioural characteristics, metabolism

and immune functions. Whilst stress factors are not entirely avoid-

able, optimizing the stress tolerance of cultured species (through die-

tary interventions) is of foremost importance to ensure sustainable

production.

Reactive oxygen species are constantly generated and annihilated

in all animals during normal physiological processes, usually in a

steady-state (dynamic equilibrium). Stressful conditions lead to the

excessive production of ROS (oxidative stress), causing progressive

oxidative damage, lipid peroxidation and subsequent cell death.221,227

Much empirical research demonstrated the critical function of carot-

enoids in augmenting the stress tolerance of aquatic animals (Table 3).

Existing data indicated enhanced resistance to oxygen-depleted

conditions,32,238 osmotic shock,118,245,246 acute crowding,244 expo-

sure to toxic ammonia,21,32 lipopolysaccharide-induced oxidative

stress,230 as well as temperature and pH fluctuations20,233 amongst

aquatic vertebrates and invertebrates associated with the supplemen-

tation of carotenoids. Nevertheless, more attention was devoted to

astaxanthin due to its popularity amongst researchers and producers

alike as one of nature's most potent and sought-after antioxidants. As

elaborated earlier, the distinctive role of carotenoids in exterminating

harmful ROS improves the overall function of the integrated antioxi-

dant system. Notably, carotenoids were also discovered to directly

modulate the mRNA expression levels of various other essential

mitochondrial-localized stress and antioxidative-related proteins

(e.g. glutamate dehydrogenase [GDH], glutamine synthetase [GS],

glutathione-S-transferase [GST], heat shock protein 70 [HSP70],

hypoxia-inducible factor-1α [HIF-1α] and manganese superoxide dis-

mutase [MnSOD]), apart from the primary endogenous enzymatic

antioxidants (i.e. CAT, GPx and SOD). These biological molecules are

vital in defying oxidative stress and sustaining the reducing environ-

ment of the cell.20,32 Intracellular signal transduction pathways are

often influenced by carotenoids in response to circulating ROS and

the degree of oxidative stress, rendering modulations in the expres-

sion of antioxidant genes.18,247 A recent investigation showed that L.

vannamei supplemented with astaxanthin (40–160 mg kg�1 diet) for

56 days exhibited remarkably upregulated mRNA expression levels of

several stress and antioxidant-related genes (i.e. GDH-β, GS, GST,

HIF-1α, HSP70 and MnSOD).32 This apparently boosted the tolerance

of the shrimp to hypoxia and ammonia stress. In separate studies, Liu

et al.20,244 similarly observed that the HSP70 gene was considerably

expressed in the yellow catfish (Pelteobagrus fulvidraco) that received

dietary astaxanthin (80 mg kg�1 diet) and β-carotene (150–

200 mg kg�1 diet) over 60 days, respectively. Both studies empha-

sized the functional significance of dietary carotenoids in stimulating

the antioxidative capacity and stress tolerance of fish against acute
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crowding and high-temperature conditions. Most available reports

also presented evidence on the suppression of the plasmatic levels of

alanine aminotransferase (ALT), aspartate aminotransferase (AST), cor-

tisol and malondialdehyde (MDA) in experimented animals with regard

to the intake of carotenoids.20,21,32,230,233,238,244 Alterations in the

activities of ALT and AST have been broadly used as relevant bio-

markers of stress response and health status in animal research. The

reduced activities of ALT and AST are indicative of stress alleviation

and enhanced liver function resulting from the supplementation of

carotenoids in aquatic animals.19,22,238 Some authors postulate that

dietary carotenoids could diminish cortisol secretion by inter-renal

cells of the head kidney via the inhibition of adrenocorticotropic hor-

mone (ACTH) release.19,22,248 Cortisol is well-described to suppress

many elements of the antioxidant system and immunity in aquatic ani-

mals that further exacerbate the deleterious effects of stressors in

synergism.242,249,250 Furthermore, MDA is recognized as a convenient

biomarker of lipid degradation in cells, denoting the extent of oxida-

tive stress and antioxidant status within hosts.230,238 An upsurge in

ROS generation in response to stressful circumstances brings about

the overproduction of MDA. Dietary carotenoids have been impli-

cated in chain termination against lipid peroxidation, safeguarding

cells from the destructive action of ROS while maintaining membrane

dynamics and cellular functions.18,230,232,251 In this regard, the repres-

sion of MDA could serve as a potential intervention strategy for cur-

tailing oxidative stress. Correspondingly, inadequate ingestion of

carotenoids might increase the vulnerability of an organism to

oxidative stress and related diseases. These collective interactions and

mechanisms, as a whole, bolster stress tolerance in aquatic species,

with reference to the alleviation of oxidative stress.

7.3 | Augmentation of host defence mechanisms
and immune gene expression

Modern aquaculture pivots around the rapid intensification, diversifi-

cation and commercialization of aquatic products. Domesticated ani-

mals, under intensive rearing, are usually subjected to stressful

situations that restrict the efficacy of their immune system and dis-

ease resistance against opportunistic pathogens (e.g. fungi, parasites,

bacteria and viruses).16,252 The industry has seen a noteworthy shift

in terms of nutrition over the last decade. Nutritional status is seem-

ingly a central aspect that influences the immune capacity of animals

to stave off diseases. Nutritional intervention inevitably keeps the

immune system on track to withstand and prevent infections.19,22 This

could benefit animals through health optimization and enhanced pro-

tection during periods of heightened vulnerability.

Bendich and Shapiro253 were the first to document the specific

roles of carotenoids on the immune responses in animals. Thereafter,

substantial research efforts have focused predominantly on boosting

the immunity of aquatic animals by incorporating dietary carotenoids.

Recent findings unambiguously established the augmentation

effects of supplemented carotenoids (i.e. astaxanthin, β-carotene,

TABLE 3 Effects of carotenoids on the stress tolerance of several aquatic species

Carotenoid

Source and

inclusion level Species Response References

Astaxanthin Natural;

80 mg kg�1 diet

Yellow catfish

(Pelteobagrus fulvidraco)

# ALT, AST, cortisol, glucose and MDA levels;

" mRNA expression levels of HSP70;

" tolerance to acute crowding stress

244

Synthetic;

50–200 mg kg�1 diet

Northern snakehead

(Channa argus)

# MDA level;

" tolerance to lipopolysaccharide-induced

oxidative stress

230

Natural;

68 mg kg�1 diet

Chinese mitten crab

(Eriocheir sinensis)

# ALT and AST levels;

" tolerance to high pH stress

233

Natural;

30–120 mg kg�1 diet

Chinese mitten crab

(Eriocheir sinensis)

# MDA level;

" tolerance to ammonia-N stress

21

Synthetic;

50–1600 mg kg�1 diet

Kuruma shrimp

(Marsupenaeus japonicus)

" tolerance to osmotic stress 118,245,246

Synthetic;

40–160 mg kg�1 diet

Pacific white shrimp

(Litopenaeus vannamei)

# MDA level;

" mRNA expression levels of antioxidant-related genes

(GDH-β, GS, GST, HIF-1α, HSP70 and MnSOD)

" tolerance to hypoxia and ammonia stress

32

β-carotene Natural;

150–200 mg kg�1 diet

Yellow catfish

(Pelteobagrus fulvidraco)

# ALT, cortisol and MDA levels;

" mRNA expression level of HSP70;

" tolerance to high-temperature stress

20

Canthaxanthin Synthetic;

50–400 mg kg�1 diet

Pacific white shrimp

(Litopenaeus vannamei)

# ALT, AST and MDA levels;

" tolerance to hypoxia

238

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; GDH-β, glutamate dehydrogenase; GR, glutathione reductase; GS,

glutamine synthetase; GST, glutathione-S-transferase; HIF-1α, hypoxia-inducible factor-1α; HSP70, heat shock protein 70; MDA, malondialdehyde;

MnSOD, manganese superoxide dismutase; mRNA, messenger ribonucleic acid.
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canthaxanthin and lutein) on several dominant facets of innate and

adaptive immunity that ultimately strengthen disease resistance,

primarily in fish and crustaceans (Table 4). Most investigations

denoted marked stimulatory actions of carotenoids on the enzymatic

activity of lysozyme, leucocyte proliferation and phagocytosis, and

respiratory burst.19,20,22,30,120,230,231,234,236,238,254,255 Additionally,

increments in humoral factors, including immunoglobulins and pro-

inflammatory molecules (e.g. complement component 3 [C3], comple-

ment component 4 [C4] and tumour necrosis factor-alpha [TNF-α]),

were observed in several fish species supplemented with caroten-

oids.19,20,22,30 Natural antioxidants, including carotenoids, have been

described to prevent peroxidation damage in various immune cells

and tissues while preserving structural integrity.16,19,22 This may well

imply the superior impacts of carotenoids on immune system activa-

tion and functions of haematopoietic organs (e.g. head kidney, spleen

and thymus). Hence, against this background, carotenoids could be

intimately linked to the modulation of haematopoiesis and immune cell

differentiation. An upsurge in lysozyme and phagocytic activities could,

therefore, be ascribed to an increased leucocyte count in view of the

improved haematopoiesis. Phagocytes eliminate pathogens principally

via the generation of ROS, lysozyme-catalysed hydrolysis and phagocy-

tosis.256,257 Moreover, dietary carotenoids have been demonstrated to

exert distinguished dual antioxidant and prooxidant activities under par-

ticular biochemical and physiological conditions. Both in vitro and in vivo

evidence elucidate that carotenoids exhibit a tendency to scavenge or

induce more ROS in biological systems, which may be dose-dependent

TABLE 4 Effects of carotenoids on the immune defences of various aquatic species

Carotenoid

Source and inclusion

level Species Response References

Astaxanthin Natural;

50–150 mg kg�1 diet

Asian seabass

(Lates calcarifer)

" leucocyte count;

" lysozyme activity, phagocytic activity, respiratory

burst activity and serum total Ig

19

Synthetic;

50–200 mg kg�1 diet

Northern snakehead

(Channa argus)

" lysozyme activity;

" levels of C3, C4, IL-1β and TNF-α
230

Natural;

50–150 mg kg�1 diet

Asian seabass

(Lates calcarifer)

" leucocyte count;

" lysozyme activity, phagocytic activity, respiratory

burst activity and serum total Ig;

" disease resistance to Vibrio alginolyticus infection

22

Natural;

91 mg kg�1 diet

Leopard coral trout

(Plectropomus leopardus)

" lysozyme activity and serum total IgM;

" levels of C3 and C4;

" mRNA expression levels of immune-related genes

(c3, c4-b, igm and lz-c)

" disease resistance to Vibrio harveyi infection

231

Synthetic;

200–800 mg kg�1 diet

Red swamp crayfish

(Procambarus clarkii)

" lysozyme activity and serum total protein 254

Source not specified;

25–200 mg kg�1 diet

Pacific white shrimp

(Litopenaeus vannamei)

" activities of lysozyme and phenoloxidase;

" total hemocyte count and phagocytic activity;

" disease resistance to Vibrio harveyi infection

255

Synthetic;

160 mg kg�1 diet

Pacific white shrimp

(Litopenaeus vannamei)

" lysozyme activity;

" mRNA expression level of lysozyme gene;

" disease resistance to Vibrio alginolyticus infection

234

β-carotene Natural;

150–200 mg kg�1 diet

Yellow catfish

(Pelteobagrus fulvidraco)

" lysozyme activity;

" levels of C3, C4 and Ig;

" mRNA expression level of igm and lz-g genes;

" disease resistance to Proteus mirabilis infection

20

Natural;

50 mg kg�1 diet

Nile tilapia

(Oreochromis niloticus)

" lysozyme and phagocytic activities;

" serum total IgM;

" mRNA expression levels of immune-related genes

(IFN-ɣ and IL-1β)

30

Synthetic;

100–500 mg kg�1 diet

Pacific white shrimp

(Litopenaeus vannamei)

" lysozyme activity 236

Canthaxanthin Synthetic;

50–400 mg kg�1 diet

Pacific white shrimp

(Litopenaeus vannamei)

" lysozyme activity 238

Lutein Natural;

50–200 mg kg�1 diet

Oriental river prawn

(Macrobrachium nipponense)

" lysozyme activity and total hemocyte count 120

Abbreviations: c3, complement component 3 gene; C3, complement component 3; C4, complement component 4; c4-b, complement component 4 gene;

IFN-ɣ, interferon-gamma; Ig, immunoglobulin; igm, immunoglobulin M gene; IgM, immunoglobulin M; IL-1β, interleukin-1β; lz-c, lysozyme C gene; lz-g,

lysozyme G gene; mRNA, messenger ribonucleic acid; TNF-α, tumour necrosis factor-alpha.
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or cell-type specific.258–263 Some studies suggest the prooxidative role

of astaxanthin in stimulating the nicotinamide adenine dinucleotide phos-

phate (NADPH) oxidase-generated ROS for a robust respiratory burst

activity in fish.19,22 There was also mounting evidence that dietary carot-

enoids can improve in vitro and in vivo immunoglobulin production in

humans264–266 and some terrestrial animals,267–270 substantiating the

findings in aquatic species. Notwithstanding the foregoing, the precise

underlying mechanisms are somewhat ambiguous and have not been

completely explicated. However, it has been proposed that, with dietary

carotenoids, T lymphocytes could be better activated to incite the prolif-

eration of B lymphocytes that mediate immunoglobulin synthesis.19,22,269

Most importantly, immunostimulants, particularly carotenoids, possess

the capability to directly trigger the defence pathway against diseases via

their action on PRRs as signalling molecules. The receptors on the target

immune cells indiscriminately identify diversified PAMPs located on

carotenoids as high-risk or foreign molecules, leading to the activation of

innate and adaptive defence mechanisms by a cascade of cellular signals,

which is crucial in developing a hostile environment for

pathogens.271–274 This initiated an overall defence response, conse-

quently expediting the detection and clearance of a broad spectrum of

infectious agents. In fact, the defence system remains reinforced even

after returning to the pre-stimulation level, as noticed in shrimps.273,275

The administration of carotenoids is widely accepted with rising aware-

ness for eco-friendly aquaculture. Thus, dietary manipulation with carot-

enoids holds enough potential to improve health status and confer

stronger disease resistance to aquatic animals, which is amongst the best

alternatives to preventive healthcare. More intensive research is required

to further comprehend their roles in disease prevention, specifically in

the context of newly emerging diseases, taking into account all aspects

of pharmacology, including optimal doses, toxicity and possible side

effects.

Genetic regulation of innate and adaptive immune systems is par-

amount to ensure appropriate elicitation of immune responses for a

rapid and vigorous defence against challenges when necessary.276,277

The function of immune cells is finely regulated through the expres-

sion of diverse immune-relevant genes. Pro-inflammatory cytokines

(e.g. interferon-gamma [IFN-ɣ], interleukin-1β [IL-1β], interleukin-6

[IL-6] and tumour necrosis factor-alpha [TNF-α]), a broad group of sig-

nalling proteins, are most frequently assessed in the study of immune

gene expression.272 These immunoregulatory molecules are mainly

secreted by activated macrophages and lymphocytes. The primary

functions of cytokines comprise the mediation and regulation of

immunity (both innate and adaptive), immune-cell communication,

haematopoiesis and inflammation.278,279 A complex signalling cascade

involving the nuclear factor-kappa B (NF-κB) protein transcription fac-

tor regulates the gene transcription of pro-inflammatory cytokines in

immune cells.272,280 In a recent study, Hassaan et al.30 revealed prom-

inent upregulations in the mRNA expression levels of IFN-ɣ and IL-1β

in Nile tilapia (Oreochromis niloticus) supplemented with β-carotene

(50 mg kg�1 diet) for 70 days. Besides, Li et al.230 noted a pro-

nouncedly higher level of TNF-α in the northern snakehead (Channa

argus) fed with dietary astaxanthin (50–200 mg kg�1 diet) over

56 days. These findings could indicate the potential mechanism of

carotenoids in modulating the NF-κB signalling pathway, as postulated

by some authors.272,280–282 Furthermore, some recent research on

carotenoid-supplemented fish similarly discovered improvements in

mRNA expression levels of several immune genes related to the com-

plement system.20,231 Nonetheless, our understanding of the mecha-

nisms in the modulation of immune-related gene expression by

carotenoids is incomplete and fragmented. Oftentimes, when stimula-

tion is identified, there is little consensus on the mechanism by which

the pigment affects the molecular process generating variation in

immune gene expression. Perhaps, experimentations are better off

advocating whole-genome and transcriptome approaches18,283,284 to

explore the complexity and broadly address the research hypothesis.

The progress in genotyping technologies (high-throughput) and avail-

ability of genome resources allowed genome-wide association studies

of immune response and disease resistance in aquatic animals.

8 | CHALLENGES IN THE DIETARY
INTERVENTION WITH CAROTENOIDS

Carotenoids have been the most explored from multifarious aspects

(e.g. chemical structure, physicochemical properties, stability, biosyn-

thesis and metabolism) amongst all phytochemicals.17,37 Dietary inter-

vention with carotenoids will continue to be intensively investigated

in the future as a sustainable strategy for developing stress tolerance,

immunocompetence and disease resistance in numerous animals. Not-

withstanding, some key challenges and concerns are worth contem-

plating but are not limited to the following: (i) vulnerability of

carotenoids to oxidation and isomerization during feed processing and

storage, (ii) variations in the nature of carotenoids and feed matrices,

(iii) uneven distribution of carotenoids within the processed feed,

(iv) erroneous quantification of carotenoid content, (v) leaching of

carotenoids from the pelleted ration and (vi) effective and optimal

administrative dosages as influenced by environmental rearing condi-

tions of target animals and species-specificity (including distinct stages

of life cycle). These factors cause, at least in part, discrepancies

between results in studies that associate carotenoid intake with the

physiological responses of animals. Perhaps the most challenging issue

is the loss or alteration of pigments during the processing and storage

of feed. Unesterified carotenoids are inclined to enzymatic or non-

enzymatic oxidative degradation and geometrical isomerization.16,285

It is particularly important, however, that carotenoids must be stable

and unaltered upon incorporation into feed formulations for maximum

effectiveness. Precautionary measures to steer clear of quantitative

losses of carotenoids should be standard practice. The prudent

solutions remain to be the refinement of feed processing methods,

identification of origins of errors and measures to circumvent them,

and the implementation of comprehensive feed quality assurance.

Nevertheless, carotenoids stand their ground as bioactive molecules

with anti-stress and immunostimulatory potentials for aquatic animals,

regardless of seeming obstacles and challenges.
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9 | CONCLUSION

Amid the aquaculture boom, disease and environmental problems

continue to threaten the sustainability of the lucrative sector. Good

nutrition is crucial to grant beneficial and lasting effects on animal

health and immunity. Carotenoids are essential bioactive molecules

primarily known for their outstanding antioxidant capacities to dis-

arm free radicals and mitigate oxidative stress. Scientific discoveries

over the years have proven the numerous physiological benefits

(e.g. robust antioxidant system and improved stress tolerance and

survival) associated with dietary carotenoids. While conferring

multiple benefits, carotenoids play an even more prominent role in

supporting the immune systems of aquatic species. These biological

pigments are generally well-acknowledged to promote host defence

systems and disease tolerance in an array of aquatic vertebrates

and invertebrates. The aquaculture industry may exploit the findings

from dietary intervention studies to develop stress-alleviating and

immune-potentiating carotenoid-fortified feeds customized per the

requirements of different stages of the production cycle. Current

advances in immunogenomics and genomic technologies spurred

substantial progress toward our knowledge of the immunomodula-

tory action of carotenoids in aquatic animals. More comprehensive

and rigorous research is still necessary to establish the explicit

functional association between antioxidant defence and immune

mechanisms modulated by carotenoids and their positive contribu-

tion to aquatic animal health.
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