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e AE B[R] O B8 45T 55 1R R S 3R TR 3 (R AR PR B ELAR 1Y L 3 0 38 U 40 B e R S 3 A L I
il 343 MD F1 DD S 4 [R] i K BAS 1 R A R B B 5 B H ., € R RIH,,, 0 € R 3SR
T Y25 W W 2 R R AR B RN 25 W1 i BTN 1 B X2 RN -2 1 X 4% R iR AR A B S H o, =MD »
Wi sHpooar =DD " W,y Hof  H ., € R FIH,,, 0 € R*™T g A4S AR W 25 (0L 10 5 72
TEBRG - iR KW Hoo o =DD « Weo poHoooio =MD" « W,y

5 8T A B IR R AR S B AR AR A R B W SRR R AR AT DL BESINR : H ), = cat(H,, ,

146X2 048
H..,H, =ca(H;  ,H,, 4):H, =cat(Hp ,H,,, p)sH,, =cat(H; H ., ) H¥ H, € R s

Hy,, €R" NBUEY -2 M4 AT S SRR R AR CH, € RO H € RYTUY SRR g - 2
Y1 0 245 F 24 RV 19 A5 0 25 B R AIE UK.
1.3.3 MEMha ™%

i M2 M 2% (hypergraph neural networks, HGNN) J& —Fjr R ok 2 8 (%) B #2245 (GNND L, B & )%
T ok A T P B 0 R P — T E A G R B — A A B L R R R — Aol mT DLGE AN DL B
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ROC Curves Lo AUPR Curve ROC Curves
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Fig.1 The ROC curve and P-R curve of MTLTPMDA are verified by 2-fold Fig.2 Comparison of ROC curves for different models

cross-validation, 5-fold cross-validation and 10-fold cross-validation

2.3 HRRIE

Ry U RS YA R L BT T 3 A S g« (R e R R T A B S A A DL RN A 5% A AL (Cosine +
GIP) AN F e 357 A0 B A P 5 A2 AR R (GIP) AU ] 4% 52 AR BRI (Cosine) . 3 88 5256 4 T DAl 1 AN [6) A7 A
P o A TR B 1) R ) L 48 7 A5 LR ) DR S B AN L O S SO R R R . R 1 RN T & LA T Y R A
FH.

e 1 R, A v 0T AE B A P R A AR LR B AR XA L PR BE R S R A G AR SE AR B
B VE .2 2 X b T R B8 SO 4 1 7 B PE B vk 5 0l 28 SR 4 T B R PR iR L S A5 AR AR 3 B T
i 1.5 T 43 a5 1 B 28 SR 4 3 A O U2 UK I R AE 58 HL L A AR R T AT S5 AR LA L BR T TR AL R B, 50 IE
T HAEZAL 5522 2 P L.

x1 ILCERAEBEUERFETHER F2 HBLXNEEMERHETHER
Tab. 1 Comparison of results under different Tab. 2 Compare the results of cross-compression and
similarity features simple concatenation
WIREN AUC ACC Pre F1 Recall WIREN AUC ACC Pre F1 Recall
GIP+Cosine  90.33 81.78 82.60 82.80 83.96 L EAEE - 90.33 81.78 82.60 82.80 83.96
GIP 90.24 81.23 82.46 82.22 82.07 A P4 88.05 80.58 80.41 80.63 81.13
Cosine 86.64 79.64 79.46 79.13 79.32

24 BESW

2 2 BRI KI5 W A M R Y T B R L o) R B KA 5 T S B Bk M, O S A A 5 T 2
R E /NGRS ECE NS U Gt B AR AR IC L B, Al Y 2E ) SRR AR S E SR v, 2R 2] R
Ir€{5X10 7,10 ",5X10 *,10 °,5X10 ° ). LI E5 R R W], 2% > KGR 5] 5 XX 10" I, B ) M B Jwe 4. A
L FE 510 VEN MTLTPMDA 46t #5 (1) 2RA 2% 3 %

S 3 a3 Ao A A 2 R SR I A TE UL 0 A R AN 9D i LA B v AR R AR T IS 5 L It
TS [RIA B 5 U 0 5 1 B 1 5 M BBURY R R R w, € {310 *,3X 10 1,10 1,10 )L S gE R, Y
FCE R ECR 1077 B S B0 AU ) B AR M B e . PR I L 6 5 SR i S 00 v, 356 3 10 1 S AR 3 0 1 RO L.

HGNN 45 P2 H T 0k 545 40 & 7 SURAIE R 27 A iy s s 32 g b i 1 1 3 5 )2 HGNN [k
A, 45 R WoR 3 2 IR R IR AL P S 2250 50 BOA R A 3 )2,
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3 EBIsSH

i MTLTPMDA Fl il v 76 530 A48 925 ) G K A BE 07, 26 B HIV R 22 3 2 98 47 22 0 i 5 6 41> 1
AW AT O A5 43 HE 2590 1 SR ET 10 44 5 XA 254 IR REHE Y AR 00T iR T 10 4.

HIV (human immunodeficiency virus)2# 4 AN B IG K 5 . & — PR AR GE RENIRTE. B2
P N AR G g8 R G5 (1 HC T A5 00, e I e ) o AR A 0 e 2 FH A A o AR R v e A i A AR
AR AR (1 T A el R ek AR T LA i e A 93 P 0 2 — SCHRE 26 100 Fr T HIV-1 RT B
Emetine 731X 4% . HF 50 5 R 38 B ik AR B BE 0% 97 3% 5¢ 8 1 HIV UKL, I 255 01 B W7 396 5 i S iz, 36 W3 T
PLHEDT HIV A BCEYFL T HIV BB 25 R an g 3 Uros 0 10 A2y YA 9 445 2066IA , & He il 1y
TE A U0 e W AR AR A Ak B SIS ARUAT: 55 A 3 B0 L et P 0 B P N 45 2R B % o A R R R 1

Curcumin 2% %4 Z W R I H Z 8 R (ZEFTRD BYML, J& 22 BHE P R0 A P 1 — B3 . 3 FloE 90 16 =7 ) o
{18 Ty 85 8 B U B T LT 45 i N R 7 TZUT S50 S BRI 22 0 3K O T 9 200 BT L AR ) S A L T ok B i
PR AR AR S e AT 1A 5 0 - 22 B 200 2 JR 4 A LA B TR P T e R T 2 S B R AL 2 . AR
Zvr Z 12 0367 FERG R W AR T B R L (A& MARATHE 45 ffF 58 & 8L, & Al LR
J b 11 EG R I3 Y R A FE VD T IR A B AR A 3 o o M X — 2 SRR AT R B R R M R
FH R SR ARV 1) R TR 4R & 0 1] 22 2 3R (0 PN 45 2R A 4 Fvos S/ 10 e 25 W) h A 8 A4 BN & He 1 1Y
T T 4 B ASE Y A A B ALUAT: 55 I 3 L HR R M AR 65 A TR 45 2R R 0% e A R 1

%3 MTLTPMDA ¥ HIV B 10 & & 4 MTLTPMDA £ Curcumin B 10 &
Tab. 3 Top 10 HIV identifications by MTLTPMDA Tab. 4 Top 10 Curcuminidentifications by MTLTPMDA
HE# 24 PMID HE# [CEX7 R PMID
1 chloroquine 11166661 1 Candida albicans 33592455
2 ivermectin 9300635 2 Enterococcus faecalis 34320428
3 gemcitabine 23994876 3 Vibrio harveyi 34371200
4 memantine 1620355 4 Bacillus subtilis 35456852
5 emetine 36139404 5 Proteus mirabilis 21808656
6 saquinavir 35883499 6 Stenotrophomonas maltophilia 33143940
7 atazanavir 15482137 7 Eikenella corrodens unconfirmed
8 zidovudine 2500164 8 Aeromonas hydrophila 32947883
9 thymalfasin Unconfirmed 9 Vibrio anguillarum unconfirmed
10 rilpivirine 10848067 10 Vibrio vulnificus 22092562
4 & it

NI 25 A B P 0 A 5 AR A A A AR R DG B, T4k B0 B 0 MM 05 1 A 802 0 e mT AR
5 25 R 56 4 B A s 0 T AR TR 10 1 4 & AL PRI o O A 2R S 2 W R 56 AR AT AR kN 26
fat e 25 AR A S 4R T 24T % I REA (R MTLTPMDA) 3 $5 00 98 78 (4 8 A 025 1 6 16 3% 07 B 1Y
B Z A TE T AR A -2 0 I 24 v (R 22500 R AR I 1 5 - 25 4 O 45 Al B At A - 2 ) O BB I AT
55+ [) i 325 D ] il £ 9 246 25 i 9 A —F I B TR 2 R AE R L I IR AR S 25 2 M i B 2 M EAE .5 4 Fh
BT 1Y 20 LS R R A [ L 45 9 MTLTPMDA £5813k75 T r AUC.

ALl HIV . SARS-COV WM AR 22 85 285X 4 A% WRUAE Y 25 9 i WF 5, ik S T MTLTPMDA
AR A U Ak e v ) T R R T R

SR MTLTPMD {588 B A5 — 26 5 B HGNN 75 ik i T H A 4 1, e ) J2 7 A 3 S8 141 BT, mT fig
T B (A GRS PN A R Ak ]
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Predicting microbe-drug associations based on multi-task learning
and hypergraph neural network

Wang Bo, Wang Junqi, Du Xiaoxin, Sun Ming, Wang Tongxuan, Li Jingwei

(College of Computer and Control Engineering; Heilongjiang Key Laboratory of Big Data Network

Security Detection and Analysis, Qiqihar University, Qigihar 161006, China)

Abstract: Traditional biological experiments to discover microbe-drug relationships are not only time-consuming and la-

bor-intensive but also highly expensive. Therefore, to reduce experimental costs and improve efficiency, computational methods

have been employed to predict microbe-drug associations. However, the existing methods neglect the crucial role of diseases as

intermediaries, which leads to the problem of data sparsity. To address this. we propose a multi-task learning model(MTLT-

PMDA) that simultaneously predicts microbe-drug and disease-drug associations. The model enhances the connections between

tasks by sharing drug node features and utilizes a hypergraph neural network(HGNN) to explore the complex interactions be-

tween microbes, drugs. and diseases. By constructing microbe-drug and disease-drug hypergraphs. the HGNN effectively cap-

tures higher-order relationships among multiple nodes. In a five-fold cross-validation framework, MTLTPMDA achieved an

AUC of 0.903 3 and an AUPR of 0.893 0, outperforming several existing methods, demonstrating the model's effectiveness in

predicting potential associations.

Keywords: microbe-drug associations; disease-drug associations; multi-task learning technology; data sparsity; hyperg-

raph neural network
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Fig.S1 HGNN architecture diagram
£S1 ST XWIE
Tab. S1  5-fold cross-validation
HIRENS B e PN F1 34 AUC 1§ AUPR 1
1 0.82 0.83 0.85 0.84 0.90 0.90
2 0.75 0.80 0.90 0.81 0.89 0.87
3 0.83 0.86 0.90 0.86 0.92 0.91
4 0.84 0.84 0.84 0.84 0.92 0.90
5 0.82 0.80 0.79 0.80 0.89 0.88
T 0.81 0.83 0.85 0.83 0.90 0.89
Wi 2% 0.001 27 0.000 68 0.002 13 0.000 6 0.000 23 0.000 27
FS2 10X XEIE
Tab. S2  10-fold cross-validation
HIRENS ik e i PENGIE:S F1 134 AUC 4 AUPR
1 0.80 0.81 0.77 0.79 0.89 0.88
2 0.77 0.85 0.70 0.77 0.90 0.92
3 0.81 0.85 0.76 0.82 0.87 0.84
4 0.80 0.75 0.84 0.80 0.89 0.87
5 0.81 0.76 0.92 0.83 0.90 0.90
6 0.83 0.86 0.79 0.82 0.90 0.89
7 0.82 0.81 0.81 0.81 0.92 0.90
8 0.84 0.83 0.87 0.85 0.91 0.90
9 0.81 0.85 0.76 0.80 0.89 0.91
10 0.77 0.81 0.75 0.78 0.85 0.85
FHE 0.81 0.82 0.80 0.80 0.89 0.89
S 0.000 52 0.001 46 0.004 18 0.000 58 0.000 40 0.000 67




RS3 SR XWIE (HER-HKBRBEIITEL)

Tab. S3  5-fold cross-validation(with randomized disease-drug associations)

RS B Y 1 4 ] % F1 184> AUC {§
1 0.82 0.82 0.83 0.82 0.89
2 0.79 0.81 0.82 0.81 0.89
3 0.81 0.85 0.91 0.86 0.92
4 0.85 0.84 0.83 0.84 0.92
5 0.82 0.80 0.80 0.81 0.89
RESLEy 0.82 0.83 0.84 0.83 0.90
2% 0.000 47 0.000 43 0.001 77 0.000 47 0.000 27

R S4 10 X XWIE (BERF-HYXBEKAEIITE)

Tab. S4 10-fold cross-validation(with randomized disease-drug associations)

ilE=es ik Hidiis # [n] & F1 144> AUC fH
1 0.81 0.83 0.76 0.79 0.89
2 0.80 0.76 0.90 0.83 0.90
3 0.81 0.83 0.78 0.80 0.87
4 0.80 0.80 0.74 0.77 0.89
5 0.81 0.76 0.91 0.83 0.91
6 0.83 0.84 0.80 0.82 0.91
7 0.83 0.84 0.79 0.81 0.92
8 0.83 0.83 0.88 0.84 0.92
9 0.80 0.85 0.78 0.80 0.89
10 0.76 0.84 0.68 0.75 0.86

- 34 0.81 0.82 0.80 0.80 0.90

I 2% 0.000 44 0.001 11 0.005 44 0.000 80 0.000 40




