

厚德博学·止于至善

读书报告

Aquaculture 464 (2016) 497-504

Contents lists available at ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aquaculture

Dietary hydroxyproline improves the growth and muscle quality of large yellow croaker *Larimichthys crocea*

Zehong Wei ^a, Jun Ma ^{a,b}, Xiaoyi Pan ^{a,b}, Hua Mu ^{a,b}, Jun Li ^{a,b}, Jikang Shentu ^c, Wenbing Zhang ^{a,b,*}, Kangsen Mai ^{a,b}

- ^a The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
- ^b The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- ^c Ningbo Ocean and Fisheries Research Institute, Ningbo 315010, China

- 饲料和肌肉常规成分分析、生长指标分析
- ■质构、pH、液体持有能力分析
- 胶原蛋白含量、吡啶交联 (PYD) 含量、氨基酸和酶活力(赖氨酸羟化酶LOX和丙氨酸4-羟化酶P4H) 测定分析
- 主成分分析,以大黄鱼生长和肌肉Hyp含量评估饲料中添加Hyp最佳水平。

Introduction

- 与野生大黄鱼相比,养殖的大黄鱼肉质较软,缺少浓郁的风味、颜色较浅 (Yi et al., 2014a)。
- 国内消费者更喜欢较硬肌 肉质构和更好感官质量的 野生的大黄鱼 (Yi et al., 2014b)。

大黄鱼价格多少钱一斤,养殖与野生的区别在哪?

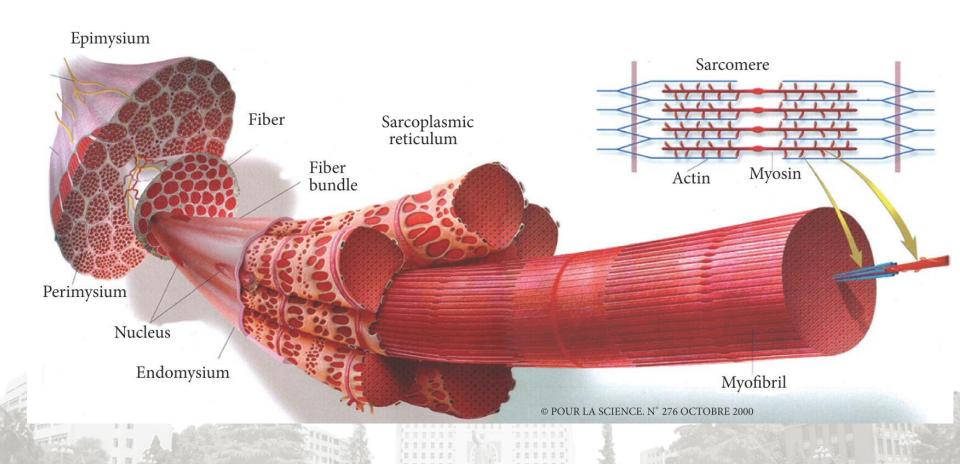
- 编辑: 趣味百晓僧 - 2019-03-12 16:42:34

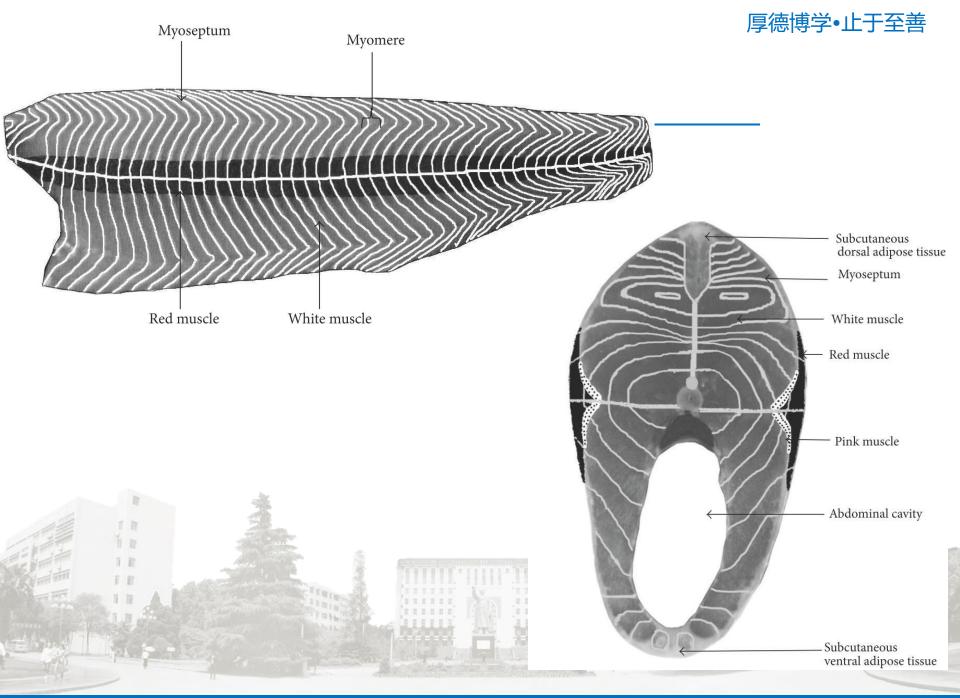
野生大黄鱼价格浮动比较大!按重量分很多种规格!同时大黄鱼还有养殖、野生之分。养殖的大黄鱼每斤大约 25~40元,而野生的则因为比较少和炒作的原因,价格较贵,3两的150,4两200,5两250,6两300,7两 350,8两400,9两450,1斤的1000。

近日,在宁波市绿顺水产有限公司大水产交易区惊见一条50多厘米长、4.9公斤重、通体金灿灿的大黄鱼,这条大黄鱼每公斤售价3万元,最终以14.8万元成交,这相当于一辆普通家庭轿车的价格。

SEMINER 19.06.16

■ It is **urgent** to find an efficient way to **improve the quality** of the **farmed** large yellow croaker.




- 水产品品质通常包括四个方面:安全性、健康性、感官品质和加工特性 (Johnston, et al., 2011; Listrat, et al., 2016)
- 内因:遗传背景、颜色、品系、肌纤维细胞特性(**质构**和脂肪含量)等。
- 外因:环境因素、**营养**和投饲策略、运动强度、屠宰方法、储存方法等。

- 肌纤维细胞特性、**胞内结缔组织**(Intramuscular connective tissue, IMCT)和胞内脂肪在决定鱼类肌肉品质方面起到决定性作用。其中,IMCT与肌肉**硬度**具有相关性(Johnston et al., 2000)。
- 胶原蛋白的含量、类型和结构是鱼类肌肉质构的重要影响 因素 (Cheng et al., 2014; Periago et al. 2005),胶原蛋白含有 大约鱼体内99.8%的羟脯氨酸(Hyp)。

■ Hyp是胶原蛋白三螺旋分子形成、肌细胞内氢键所不可缺少的物质,维持胶原纤维完整性和三螺旋的热稳定性 (Gelse et al.,2003; Myllyharju and Kivirikko, 2004); 也被认为是合成甘氨酸、丙酮酸、葡萄糖和谷氨酸的亚基 (Wang et al., 2013; Wu et al., 2010), 如今已被认为是水产动物的条件性必须氨基酸 (Li et al., 2009)。

- Aksnes et al. (2008)报道饲料添加Hyp可显著提高三文鱼的 生长速率和椎骨中的Hyp。
- 相反, Zhang et al. (2013)研究发现, Hyp不能促进大菱鲆 由于的生长但是可以提高其肌肉中的胶原蛋白含量。

- 吡啶交联(**PYD**)能够连接胶原蛋白分子,使组织**更稳定** (Li et al.,2005)
- PYD与三文鱼肉排的硬度具有显著的正相关 (Johnston et al., 2006; Li, et al., 2005)。
- 此外, Johnsen et al. (2011)认为PYD是显著影响肉排**硬度** 唯一因素。

- 赖氨酸羟化酶(Lysyl hydroxylase,LOX)是传统意义上被认为催化赖氨酸和羟赖氨酸的ε-氨基集团,使其氧化脱氨,促进交联,这是参与胶原交联形成的唯一一步酶促反应 (Gelse, et al., 2003; Wang, et al., 1996)。
- 评估饲料中的Hyp对鱼体内PYD含量和LOX活性影响,以及这些指标对鱼类肌肉质构的影响的研究较少,因此,这方面的研究需要进一步开展。

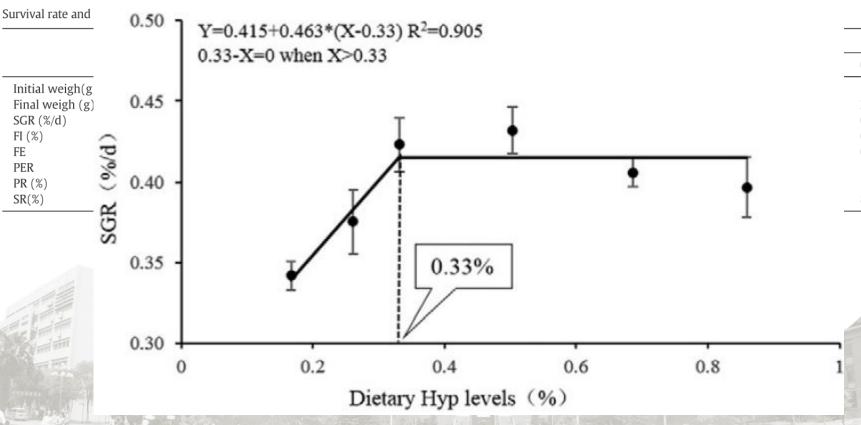
- 该研究选择Hyp作为营养成分添加到大黄鱼饲料中,饲养82天,取样分析**胶原蛋白含量、相关酶活性**及胶原蛋白合成过程中**PYD**的含量。同时检测肌肉质构指标。
- 该研究的主要目的是探讨鱼粉比例较小饲料中,添加不同浓度的Hyp对大黄鱼生长和肌肉质构的影响。

Table 1

德博学•止于至善

Formulation and proximate composition of the experimental diets (% dry matter).

	Dietary Hyp levels					
Ingredients	0%	0.1%	0.2%	0.4%	0.6%	0.8%
Fish meal ^a	25	25	25	25	25	25
Soybean meal ^a	25	25	25	25	25	25
Wheat meal ^a	26	26	26	26	26	26
Fish oil	6	6	6	6	6	6
Soybean lecithin	2.5	2.5	2.5	2.5	2.5	2.5
Mineral premix ^b	2	2	2	2	2	2
Vitamin premix ^c	2	2	2	2	2	2
Choline Chloride	0.2	0.2	0.2	0.2	0.2	0.2
Attractant 甘氨酸: 甜菜碱=1	:21.5	1.5	1.5	1.5	1.5	1.5
Mold inhibitor ^e 防霉剂	0.1	0.1	0.1	0.1	0.1	0.1 50%丙酸钙和50%富马酸
Ethoxyquine 氧基喹啉	0.05	0.05	0.05	0.05	0.05	0.05
Amino acid premix ^f	5.70	5.70	5.70	5.70	5.70	5.70
Microcrystalline cellulose	3.15	3.15	3.15	3.15	3.15	3.15
Alanine	0.8	0.7	0.6	0.4	0.2	0
Hydroxyproline	0	0.1	0.2	0.4	0.6	0.8
Total	100	100	100	100	100	100
Proximate analysis						
Crude protein	43.56	44.20	43.90	43.89	43.42	43.85
Crude lipid	12.82	13.43	12.71	13.35	12.34	12.95
Moisture (% wet weight)	5.32	5.09	5.04	6.41	5.36	5.04
Hydroxyproline	0.17	0.26	0.33	0.50	0.69	0.96
riyaroxypronnic	0.17	0.20	0.55	0.50	0.05	0.80


指标测定:饲料和肌肉样品常规成分分析,生长指标,肌肉水溶性和盐溶性蛋白分析,鱼排质构,肌肉pH,肌肉液体持水力,胶原蛋白含量,PYD含量,脯氨酰4-羟化酶(P4H)和赖氨酰氧化酶(LOX)酶活力分析等。

读书报告

■结果

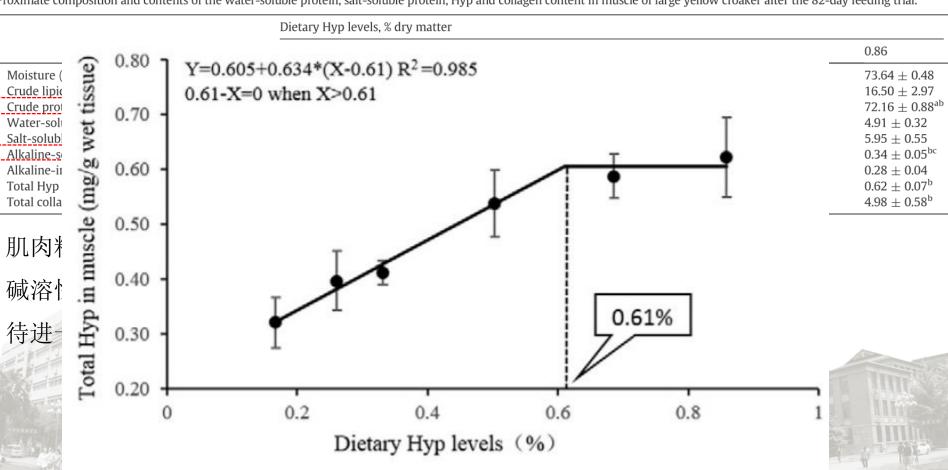
读书报告

Liquid holding capacity (LHC) and pH in the muscle of large yellow croaker after the 82-day feeding trial.

	Dietary Hyp levels, % dry matter							
	0.17	0.26	0.33	0.50	0.69	0.86		
Liquid loss (%)	$23.80 \pm 0.34^{\circ}$	22.8 ± 0.87 ^{bc}	$22.28 \pm 0.98^{\mathrm{bc}}$	21.41 ± 0.93^{abc}	19.14 ± 0.37^{a}	20.39 ± 0.62^{ab}		
Water loss (%)	21.87 ± 0.66^{c}	21.41 ± 1.11^{bc}	20.65 ± 1.17^{bc}	18.89 ± 1.31^{abc}	17.18 ± 0.43^{a}	17.96 ± 0.37^{ab}		
Lipid loss (%)	1.93 ± 0.17	1.94 ± 0.09	1.62 ± 0.19	2.16 ± 0.15	1.96 ± 0.18	2.14 ± 0.26		
pH	6.63 ± 0.01^{a}	6.70 ± 0.02^{ab}	6.67 ± 0.03^{ab}	6.69 ± 0.01^{ab}	$6.76 \pm 0.02^{\mathrm{b}}$	6.74 ± 0.03^{b}		
		<u> </u>	<u> </u>	<u> </u>				

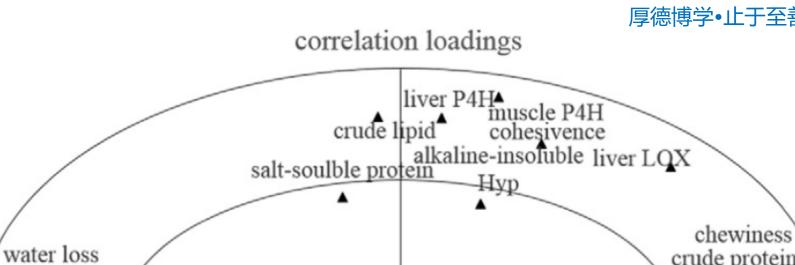
Muscle texture of large yellow croaker after the 82-day feeding trial.

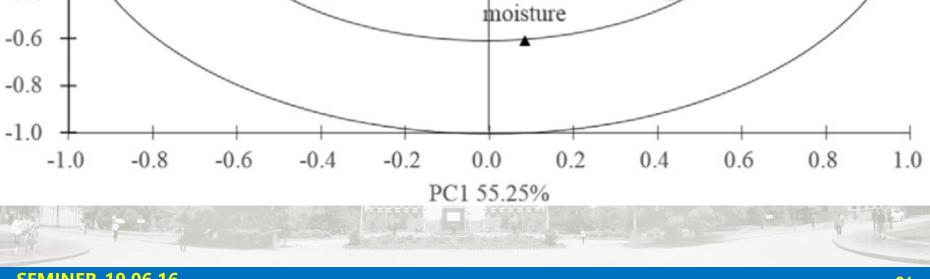
	Dietary Hyp levels, % dry matter							
	0.17	0.26	0.33	0.50	0.69	0.86		
Hardness(g) Springiness (mm) Chewiness (mJ) Cohesiveness Adhesiveness (g*mm)	446.80 ± 11.46^{a} 2.45 ± 0.06^{a} 285.94 ± 10.36^{a} 0.25 ± 0.01 21.37 ± 1.17	458.72 ± 10.48^{ab} 2.46 ± 0.08^{a} 307.96 ± 9.32^{ab} 0.26 ± 0.01 19.72 ± 1.06	474.51 ± 14.27^{abc} 2.54 ± 0.08^{ab} 330.65 ± 8.48^{bc} 0.27 ± 0.01 19.5 ± 1.07	484.28 ± 13.61^{abc} 2.53 ± 0.08^{ab} 349.11 ± 11.29^{bc} 0.26 ± 0.01 18.65 ± 1.03	511.26 ± 14.28^{bc} 2.80 ± 0.05^{b} 359.21 ± 11.32^{c} 0.27 ± 0.01 17.52 ± 0.55	$513.19 \pm 12.84^{\circ}$ 2.62 ± 0.09^{ab} $353.33 \pm 10.53^{\circ}$ 0.26 ± 0.00 17.68 ± 1.02		


- 肌肉质构的改善可能是由于肌肉胶原蛋白含量的增加。
- 胶原蛋白纤维在宰后24小时内开始降解 (Ando et al., 1991), 在冷冻储藏过程中,鱼肉的快速软化与结缔组织组分的改 变有关,即胶原蛋白的降解而不是肌纤维蛋白 (Sato et al., 1991)。

读书报告

Proximate composition and contents of the water-soluble protein, salt-soluble protein, Hyp and collagen content in muscle of large yellow croaker after the 82-day feeding trial.


crude protein


muscle LOX PYD

springiness

alkaline-soluble Hyp Total collagen hardness

lipid loss

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

liquid loss

adhesivence

water-soluble

protein

PC2 20.03%

- The texture characteristics (springiness, hardness and chewiness) show a high and positive correlation with PYD and Hyp contents in muscle, but high and negative correlation with LHC (water loss and liquid loss).
- 质构特性(弹性、硬度和咀嚼性)与肌肉中PYD和Hyp的 含量具有很高的正相关性,与液体保持力(LHC)具有较 高的负相关。

- 收获:通过研读该篇文献,更加聚焦了鱼类肌肉质构通过外源营养调控的机理,并对个人的研究内容有很大启发。
- 文章的不足:文章关于调控机理方面做得工作较少,只涉及了两个关键的酶活力和肌肉的pH,可考虑补充相关的基因表达的变化。

谢谢!

