半正规、共轭置换与有限群的超可解性

赵先鹤, 汪艳丽
（河南师范大学 数学与信息科学学院，河南 新乡 453007）

摘 要：研究了有限群的超可解性问题。结合共轭置换子群与半正规子群的概念，在群 G 的极大子群（2-极大子群）或共轭置换或半正规的条件下给出了群 G 超可解的若干充分条件。

关键词：共轭置换子群；超可解群；半正规子群

中图分类号：O152 文献标志码：A

共轭置换子群的概念是由 T. Foguel 在文献[1]中首次提出的。群 G 的子群 H 称为 G 的共轭置换子群，若 $HH^z = H^zH$，对任意 $z \in G$ 都成立。

这一概念与群 G 结构之间的关系已被许多群论学者所研究，见文献[1-7]。其中，在文献[2, 4]中作者分别研究了 G 的极大子群和 2-极大子群与 G 的超可解性之间的关系。

我们称群 G 的子群 A（在 G 中）是半正规的，如果存在一个子群 B 使得 $G = AB$，且对 B 的任何真子群 B'，AB' 是 G 的真子群。这样的子群 B 叫作 A 在 G 中的 S-补。A 在 G 中的 S-补之集合记为 $S_c(A)$。

对于半正规子群的研究已有许多很好的结果（如文献[8-9]），特别是，苏向盈在文献[9]中证明了如果有限群 G 的极大子群（2-极大子群）在 G 中均是半正规的，则 G 是超可解的。

综合以上两方面的研究，在本文中，我们把半正规与共轭置换结合起来证明了：

定理 1 若有限群 G 的极大子群在 G 中共轭置换或半正规，则 G 超可解。

定理 2 如果 G 的 2-极大子群在 G 中或半正规或共轭置换，且 G 的任何截断均不同构于内交换群，则 G 是超可解的。

本文所讨论的群 G 都是有穷群，p 是 $|G|$ 的一个素因子，用 G_p 表示 G 的 Sylow p-子群，$G_{p'}$ 表示 G 的 p'-Hall 子群；$\pi(G)$ 表示 $|G|$ 的素因子的集合。文中的其它符号都是标准的，参见文献[10]。

1 主要引理

引理 1 [1] 设 G 是一个群，$H < G$ 且 H 为 p-群，则 H^p 必为 p-群。

引理 2 [4] 若 G 的极大子群均在 G 中共轭置换，则 G 半正规。

引理 3 [4] 群 G 是超可解的当且仅当它的极大子群均是半正规的。

引理 4 [6] 如果群 G 的 2-极大子群都是半正规的，则 G 是超可解的。

引理 5 [8] 设 G 是一个群且 $\Phi(G) = 1$，则 $F(G)$ 是交换群且 $F(G) = \langle N \mid N \in G \text{ 是 G 的可解的极小正规子群} \rangle$。

引理 6 [10] 设 G_1, G_2 是 G 的子群满足 $G = G_1G_2, P \in Syl_p(G)。$ 存在 $P_1 \in Syl_p(G_1), P_2 \in Syl_p(G_2)$ 使得 $P = P_1P_2$。

收稿日期：2014-05-19；修回日期：2014-11-12。

基金项目：国家自然科学基金（10771172；11271301；U1204110）；河南省教育厅重点项目（13B100085）；校青年骨干教育培养计划（01016500608）。

作者简介：赵先鹤（1979-），女，河南南阳人，河南师范大学副教授，博士，主要从事有限群研究，E-mail：zhaoxianhe889@163.com。
引理 7 设 G 是一个群，$M \triangleleft G$，如果 M 的极大子群 H 在 G 中共轭置换，则 $H \trianglelefteq G$ 或者 $M \trianglelefteq G$。

证明 因为 $H \triangleleft M$，则 $H \trianglelefteq G$，从而必存在一个次正规群列

$$H \trianglelefteq K_1 \triangleleft K_2 \triangleleft \cdots \triangleleft K_l \trianglelefteq G,$$

由 $H \triangleleft M$ 且 $H \triangleleft M$ 得 $H \triangleleft M$，从而 $M \triangleleft N_0(H)$。

若 $M = N_0(H)$，由 $K_i \triangleleft N_0(H)$ 得 $K_i \triangleleft M_i$，即 $H \triangleleft K_i \triangleleft M_i$。由 $H \triangleleft M_i$ 得 $K_i = M_i$。又由 M 的极大性可知不存在 K_i，即 $N < K_i = M \trianglelefteq G$。

若 $M < N_0(H)$，由 M 的极大性可知 $N_0(H) = G$，则 $H \trianglelefteq G$。

引理 8 设 G 是一个群，$\pi(G) = \{ p, q \} (p \neq q)$，$P$ 是 G 的 Sylow p 子群，Q 为 G 的 Sylow q 子群。如果 P 是 G 的唯一极小正规子群，且 $|Q| = q$，则 G 为内交换群。

证明 显然 G 可解，所以对任意的 $A \triangleleft G$，有 $|G : A| = p$ 或 p'。若 $|G : A| = p'$，则 $G = PA$。由 P 为解的极小正规子群可知 P 是交换群，从而 $P \cap A \triangleleft P$。同时 A 正规化 P，所以 $P \cap A \triangleleft G$。因为 $P \not\triangleleft A$ 且 P 的唯一极小正规性知 $P \cap A = 1$。又因为 $G = PQ$，所以 $|A| = |Q|$。从而 G 的极大子群要么是 P 要么是 q 阶的循环群，于是 G 的所有真子群都是交换的，故 G 为内交换群。

引理 9 设 A 是 G 的半正规子群，则

(1) 如果 $A \triangleleft H \triangleleft G$，那么 A 是 H 的半正规子群；
(2) 如果 $N \triangleleft G$，那么 AN/N 是 G/N 的半正规子群。

引理 10 若 $H \triangleleft G$，则任意的 $N \triangleleft G$ 有 $HN/N \triangleleft H/N$。

引理 11 设 G 是一个群，如果 G 的 2 极大子群在 G 中或共轭置换或半正规，对于任意的 $N \triangleleft G$，则 G/N 的 2 极大子群在 G/N 中或共轭置换或半正规。

证明 设 $M/N \triangleleft G/N$，则 $M \triangleleft G$。否则，必存在 $M \triangleleft M'$ 使得 $M' \triangleleft G$，因为 $N \leq M \leq M'$，故 $M/N < M'/N < G/N$，此与 $M/N \triangleleft G/N$ 矛盾。所以 $M \triangleleft G$。设 $M_i/N \triangleleft M/N$，则 $M_i \triangleleft M$，于是 M_i 是 G 的 2 极大子群。由题设条件可知 M_i 在 G 中或共轭置换或者半正规，又由引理 9 及引理 10 可知 M_i/N 在 G/N 中或共轭置换或半正规，所以 G/N 的 2 极大子群在 G/N 中或共轭置换或半正规。

2 主要结果

在证明主要结果之前，我们需要下面的命题。

命题 1 设群 G 的 2 极大子群在 G 中共轭置换，且 G 的任何截断均不同构于内交换群，则 G 超可解。

证明 假设 G 为极小阶反例，由引理 11 可知定理条件商群遗传，因此我们可以假设 $\Phi(G) = 1$。

(1) $G = PQ，P \triangleleft G$，Q 为循环群，其中 $P \in \text{Syl}_p(G)$，$Q \in \text{Syl}_q(G)$。

由引理 2 可知 G 的极大子群都是幂零的，从而 G 是幂零群，则 $G = PQ$，$P \triangleleft G$，Q 为循环群，其中 $P \in \text{Syl}_p(G)$，$Q \in \text{Syl}_q(G)$。

(2) G 有唯一的极小正规子群 N，满足 $N = P = F(G) = C_0(N)$。

设 N 是 G 的极小正规子群，由 (1) 可知 N 为初等交换群。事实上，N 是 G 唯一的极小正规子群，否则，若 G 还有另一极小正规子群 N'，由引理 11 可知 $G/N \triangleleft G/N'$ 超可解，所以 $G/N \leq G/N'$ 且 $G/N \triangleleft G/N'$ 超可解。又因为 $N \cap N' = 1$，于是 G 超可解，矛盾。所以 N 是唯一极小正规子群，由 N 的唯一极小正规性及引理 5 得 $F(G) = N$。由步骤 (1) 中 $P \triangleleft G$ 可知 $P \triangleleft F(G) = N$，又因为 N 为素数幂阶群，所以 $P = N$。由 G 可解得 $C_0(F(G)) \leq F(G)$，即 $C_0(N) \leq N$。再由 N 初等交换可知 $N \leq C_0(N)$，于是 $C_0(N) = N$，所以 $N = P = F(G) = C_0(N)$。

(3) Q 为 G 的极大子群，且 Q 为素数阶群。

证明如下。
第2期 赵先鹤，等：半正规、共轭置换与有限群的超可解性

(3.1) Q 为 G 的极大子群。
假设 Q 不是 G 的极大子群，则存在 M 使得 Q ≤ M 且 M 使得 Q ≤ l ≤ M，因为 M 为幂零群，所以 M ≤ Q。由于 Q ≤ G，所以 M ≤ Q。由于 Q ∩ G，所以 Q ∈ Syl。从而 Q ≤ C。(P) = C.(N) = N，矛盾。

(3.2) Q 为素数阶群。
否则，存在 1 < Q ≤ Q，由设条件知 Q ≤ C.(P)。由引理 3 知 Q 为 p 群，所以 Q = Q × P。故 Q ≤ C.(P) = C.(N) = N，矛盾。所以 Q = 1，即 Q 为素数阶群。

定理 1 设 G 是一个群，若群 G 的极大子群均在 G 中或共轭置换或半正规，则 G 超可解。
证明 假设 G 为极小阶反例，证明如下。
(1) 设 G 中至少存在两个极大子群 S，T 使得 S ≠ T 且 S > 1，T > 1 满足 S 在 G 中共轭置换(或半正规)，T 在 G 中半正规(或共轭置换)。
如果 G 的极大子群均在 G 中共轭置换，由引理 2 可知 G 置换群 G，显然 G 也是超可解的，矛盾。若 G 的极大子群均在 G 中半正规，由引理 3 可知 G 超可解，矛盾。若 G 的极大子群为 1，则 G 为素数阶群，从而 G 超可解，矛盾。所以 G 中至少存在两个极大子群 S，T 使得 S ≠ T 且 S > 1，T > 1 满足 S 在 G 中共轭置换(或半正规)，T 在 G 中半正规(或共轭置换)。
(2) 设对于任意 M ≤ G，|G : M| 为素数。
由步骤(1) 知 M > 1。下面分两种情形进行讨论：
情形 1 M 在 G 中共轭置换，
因为 M 在 G 中共轭置换，所以 M ≤ G，由 M 的极大性可知 M ≤ G。由 M 的极大性可知 G/M 没有平凡的子群，所以 |G : M| 为素数。
情形 2 M 在 G 中半正规。
下面证 B = ⟨x⟩，否则 ⟨x⟩ < B。因为 M 是半正规的，B ∈ Syl(M)，所以 M(x) < G。由 x ∈ M 可知 M < M(x)，则此与 M 的极大性矛盾。所以 B = ⟨x⟩，从而 M = G(x)。

综上所述，对于 G 的任一极大子群 M，有 |G : M| 为素数，故 G 超可解，矛盾。

定理 2 设群 G 的 2- 极大子群在 G 中或共轭置换或半正规，且 G 的任何截断均不等同于内交换群，则 G 超可解。
证明 假设 G 为极小阶反例，由定理 1 知 G 的任一极大子群超可解，故 G 超可解(从而 G 是可解群)。由引理 11 知定理条件具备，因此我们假设 G = 1。
(1) G 中至少存在两个 2- 极大子群 S，T 使得 S ¹ T 且 S > 1，T > 1，满足 S 在 G 中共轭置换(或半正规)，T 在 G 中半正规(或共轭置换)。
若 G 的 2- 极大子群均在 G 中共轭置换，由命题 1 知 G 超可解，矛盾。如果 G 的 2- 极大子群在 G 中半正规，由引理 4 知 G 超可解，矛盾。如果 G 的 2- 极大子群为 1，则 G 的极大子群均为素数阶循环群，所以 G 超可解，矛盾。所以 G 中至少存在两个 2- 极大子
群 S, T 使得 $S_i \leq T_i$ 且 $S_i > 1, T_i > 1$, 满足 S 在 G 中共轭置换（或半正规），T 在 G 中半正规（或共轭置换）。

(2) G 有唯一极小正规子群 N, 使得 $G = N \triangleleft M, M \leq G$, 且 $N = F(G) = C_o(N)$。

证明如下。

(2.1) G 有唯一极小正规子群 N 且 $N = F(G) = C_o(N)$。

设 N 是 G 的极小正规子群，由 G 的可解性得 N 为初等交换群。事实上，N 是 G 唯一的极小正规子群。否则，若 G 还有另一极小正规子群 N'，由 G/N 与 G/N' 满足定理条件得 G/N 与 G/N' 超可解，故 $G/N \cap N' \cong G/N \times G/N'$ 超可解。又因为 $N \cap N' = 1$，所以 G 超可解，矛盾。

由 N 的唯一极小正规性及引理 5 得 $F(G) = N$. 由 G 的可解性可知 $C_o(F(G)) \leq F(G)$，因为 N 初等等交换，$N \subseteq C_o(N) = C_o(F(G)) \leq F(G)$。又因为 $F(G) = N$，所以 $N = F(G) = C_o(N)$。

(2.2) $G = N \triangleleft M, M \leq G$。

由 $\Phi(G) = 1$ 可得存在 $M \triangleleft G$ 使得 $N \triangleleft M$，因此 $G = NM$. 因为 N 是交换的，所以 $N \cap M \triangleleft N$，又因为 M 正规化 N，所以 $N \cap M \triangleleft M$，于是 $N \cap M \leq NM = G$。而 $N \nsubseteq N \cap M$，由 N 的唯一极小正规性得 $N \cap M = 1$，所以 $G = N \triangleleft M$。

(3.1) G 为 p-群，则 p 为 $|G|$ 的最大素因子。

否则，存在 $|G|$ 的某个素因子 q 使得 $q > p$. 取 M 的 q 阶子群 Q，由 (2) 中 $N \triangleleft Q$，我们考虑子群 NQ。

如果 $NQ = G$，由 (2) 知 N 为 G 唯一的极小正规子群，从而 G 满足引理 8 的条件，于是 G 为内交换群，这与定理假设矛盾。所以 $NQ < G$。

由 G 内超可解可知 NQ 超可解，又因为 $q > p$，所以 $Q \triangleleft NQ$，故 $NQ = N \times Q$，进而 $Q \leq C_o(N) = N$，与 (2) 矛盾。因此，p 为 $|G|$ 的最大素因子。

(3.2) 为 G 的 Sylow p-子群。

设 P 是群 G 的一个 Sylow p-子群，由 (3.1) 知 $N \leq P$，若 $N < P$，由 (2) 中 $G = NM$ 可知 p 整除 $|M|$，设 $M \in Syl_p(M)$，由 G 内超可解知 M 超可解，结合 (3.1) 中的 p 为 $|G|$ 的最大素因子，所以 $M \leq M$. 我们分以下步骤进行证明：

(4.1) 必存在子群 $H \leq M$ 使得 $|M : H| = p$，特别地，$H > 1$。

否则，对任意的 $H \leq M$，由 G 内超可解可知 M 是超可解群，所以 $|M : H|$ 是一个不等于 p 的素数，从而 $M \leq H$，由 H 的任意性及 M_p 的正规性可知 $M_p \leq \Phi(M)$，矛盾。故必存在子群 $H \leq M$ 满足 $|M : H| = p$。

如果 $H = 1$，则 $|M| = p$，由 (2) 中 $G = NM$ 及 (3.2) 中 $N \leq p$-群可知 G 为 p-群，从而 G 超可解，矛盾。因此可以假设 $H > 1$。

(4.2) 在 G 中半正规，对于 $D \in Syl(H)$，可以假设 $D = p$-群。

由 (4.1) 知 H 为 G 的 p-极大子群，由题设知 H 在 G 中或共轭置换或半正规。如果 $H < G$，由引理 7 可知 $M \triangleleft G$ 或者 $H \triangleleft G$。如果 $M \triangleleft G$，则 $G = N \times M$，所以 $M \leq C_o(N) = N$，与 (2) 矛盾。如果 $H \leq G$，则 $HN = H \times N$，所以 $H \leq C_o(N) = N$，与 (2) 矛盾。所以 H 在 G 中半正规。

设 $D \in Syl(H)$，则 $G = HD$，设 $P \in Syl_p(M)$，由引理 6 可知存在 $H_p \in Syl_p(H), D_p \in Syl_p(D)$ 使得 $P = H \cap D_p$。可以断定 $D = p$-群，若否，我们有 $D_p < D$，由 H 半正规知 $HD_p < G$，考虑子群 HD_p，一方面，$P = H \cap D_p \leq HD_p$，即 HD_p 包含 G 的 Sylow p-子群。另一方面，由 (2) 中 $G = NM$ 及 (4.1) 中 $|M : H| = p$ 可知 $G = |M : H| = |N : p| \times |p|$. 由 (3.1) 知 $N \leq p$-群，于是 H 包含 G 的 p'-Hall 子群，从而 HD_p 包含 G 的 p'-Hall 子群。综合可得 $G = HD_p$，与 $HD_p < G$ 矛盾。所以 $D = p$-群。

(4.3) $|N| = p$。

因为 $H \leq M \leq G$ 及 (4.2) 中 $G = HD$，所以 $D \leq M$，于是 $M \cap D < D$，从而存在 $D_i < D$ 使得 $M \cap D_i < D_i$，所以 $M \cap G = M \cap HD = H(M \cap D) \leq HD_i$，又因为 H 是半正规的，且 $D_i < D$，所以 $HD_i < G$。从而 $M \leq HD_i < G$，由 M 的极大性得 $M = HD_i$.
由于 (2) 中的 $G = NM$ 且 $N \cap M = 1$，所以 $1 < |N| = |G : M| = |HD : HD_1| = \frac{|D|}{|H \cap D|}$。

$$\frac{|H \cap D_1|}{|D_1|} = \frac{|D|}{|D_1|} \cdot \frac{|H \cap D_1|}{|H \cap D|}.$$ 因为 $D_1 < D$ 且 D 为 p' 群，所以 $\frac{|D|}{|D_1|} = p$。由于 $|H \cap D_1| \leq |H \cap D|$，所以 $|N| = p$。

(4.4) 最终的结论。

由 G/N 超可解及 (4.3) 可知 G 超可解，矛盾，从而 N 为 G 的 Sylow p-子群。

(5) 设 $A < M$，则 $A > 1$，并且 A 在 G 中半正规。特别地，对于 $B \in S_c(A)$，有 $B = RN$，$B \not< G$ 且 $M = AR$，其中 $R \in Syl_r(B)$。

具体的证明如下。

(5.1) 设 $A \leq M$，则 $A > 1$。

若 $A = 1$，由 $A \leq M$ 可知 M 为素数阶循环群，则 $(|M|, p) = 1$。否则，M 为 p-群，由 (2) 中 $G = MN$ 及 (3) 中 N 为 p-群可知 G 为 p-群，于是 G 超可解，矛盾。不妨设 $|M| = q$ 且 $(q, p) = 1$，所以 $|G| = p^aq(n)$ 为正整数且 $n \geq 1$，从而由 (2)，(4) 及引理 8 可知 G 是内交换群，矛盾。所以 $A > 1$。

(5.2) A 在 G 中半正规。

否则，由定义假定可知 A 在 G 中共轭置换。由引理 7 可知 $M \not< G$ 或 $A \not< G$。若 $M \not< G$，则 $G = N \times M$，所以 $M \leq C_{S}(N) = N$，与 (2) 矛盾。若 $A \not< G$，则 $NA = N \times A$，所以 $A \leq C_{S}(N) = N$，与 (2) 矛盾。所以 A 在 G 中半正规。

(5.3) 设 $B \in S_c(A)$，下面证明 $B = RN$，且 $M = AR$，其中 $R \in Syl_r(B)$ 且 $p \neq R$。

由 M 超可解及假设 $A \leq M$ 可知 $|M : A| = r$，其中 r 为 $|G|$ 的某一素因子。由 (2) 和 (4) 可知 $G = NM$，$N \cap M = 1$ 且 $N \in Syl_r(G)$，所以 M 为 G 的 p'-Hall 子群，则 $M : A$ 为一个 p'-数，从而 $r \neq p$。

又因为 $A \leq M$，且 M 为 p'-群，所以 A 为 p'-群。又由 (5.2) 中 A 在 G 中半正规且 $B \in S_c(A)$ 可知 $G = AB$，从而 $N \leq B$。

一方面，$|G : A| = |G : M \times M : A| = |N \times r$，另一方面，$|G : A| = |AB : A| = \frac{|B|}{|A \cap B|}$，故 $|N| = \frac{|B|}{|A \cap B|}$，从而 r 整除 $|B|$。设 $R \in Syl_r(B)$，由 $N \leq B$ 及 (2) 中 $N \not< G$ 知 $N \not< B$，所以 $RN \leq B$。下面证 $B = RN$。

如果 $RN < B$，因为 A 是半正的，$B \in S_c(A)$，$R \in Syl_r(B)$，所以 $AR < G$。又因为 $AR \leq B = (A \cap B)R$，所以 $(A \cap B)R \leq B$。由 $(A \cap B)R \leq B$ 及 (2) 中 $N \not< G$ 知 $N \not< B$，所以 $(A \cap B)RN \leq B$。注意到 $\frac{|B|}{|A \cap B|} = |N| \times r$，由 (4) 中 $N \in Syl_r(G)$ 及 $R \in Syl_r(B)$ 可知 $B = (A \cap B)RN$，从而 $AB = A(A \cap B)RN = ARN$。

由假设 $RN < B$ 及 A 是半正的可知 $ARN < G$，从而 $AB < G$，此与 (5) 中 $B \in S_c(A)$ 矛盾。

下面证明 $M = AB$。由 (5.3) 中 $r \neq p$ 且 $B = RN$ 可得 $R < B$，结合 A 是半正的及 $B \in S_c(A)$ 可知 $AR < G$。因为 $G = AB$，且 $B = RN$，于是 $G = ARN$，从而 $|G : N| = \frac{|AR|}{|AR \cap N|}$。由 (5.2) 中 A 为 p'-群及 $r \neq p$ 可知 AR 为 p'-群，所以 $AR \cap N = 1$，即 $|G : N| = |AR|$。又由 (4) 中 $N \in Syl_r(G)$ 可知 AR 是 G 的 p'-Hall 子群，从而由 G 的可解性可知 AR 与 M 共轭，我们不妨设 $M = AR$。

(5.4) B 为 G 的真子群。

否则，我们假定 $B = G$，因为 (5.2) 中 A 是半正的，对于任意的 $M \not< G$，有 $AM \not< G$，由 $M \leq AM$ 及 M 的极大性可知 $M = AM$，从而 $A \leq M$，因此 $A \leq \Phi(G) = 1$，与 (5) 中 $A > 1$ 矛盾，所以 $B < G$。

(6) 最终的矛盾。

由 G 内超可解可知 B 超可解，又由 (5) 中 $B = RN$ 可知存在 B 的正规 p'-子群 P_α，使得 $|N : P_\alpha| = p$。由 $|RN : P_\alpha| = p$ 可知 $P_\alpha < RN = B$。又因为 A 是半正的且 $B \in S_c(A)$，于是 $ARP_\alpha < G$。结合 (5) 中 $M = AR$ 可知 $M \leq ARP_\alpha < G$，从而由 M 的极大性可知 $M = ARP_\alpha$，故 $P_\alpha \leq M$。又由 (5) 中 M 为 p'-群
可知 $P_B = 1$，于是由 $|N : P_B| = p$ 可知 $|N| = p$，由 G/N 超可解可得 G 超可解，矛盾。

参考文献

Semi-normal, Conjugate-permutable and Supersolvability of Finite Groups

ZHAO Xianhe, WANG Yanli

(College of Mathematics and Information Science, Henan Normal University, Xinxian 453007, China)

Abstract: This paper investigates the supersolvability of the finite group G. Combine the concepts of semi-normal subgroups and conjugate-permutable subgroups, we get some sufficient conditions for supersolvability of the group G, which is based on that the maximal subgroups (maximal subgroups) of a group G are either conjugate-permutable or semi-normal.

Keywords: conjugate-permutable subgroups; supersolvable groups; semi-normal subgroups