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Tab. 1 Evaluation results of different image denoising models with objective metrics

Methods Pix2Pix TransUNet UFormer CharFormer Masked Ours
PSNR 4 16.66 17.98 18.90 19.87 19.88 21.40
SSIM 4 0.829 153 0.813 623 0.588 915 0.685 689 0.764 513 0.924 612

3.4 HMEHSH
H T 1AL R2pixGAN %%, i85 242 B (FLOPs) . 2 5 & (Params) DA K #E B[] (Runtime) %5 £
AN S AT W AT 2 2 o T ORISR AR I SEFE AR 1 A 6T L2 SR AR R2pixGAN 195 80 A L
3 HE TR A 1 o F S Y 2 MR AR e A UE I T R A 0 S B R B
*2 FEEEZEHNELR

Tab. 2 Comparison of efficiency between different models

Metrics Pix2Pix TransUNet UFormer CharFormer Masked Ours
FLOPS/G 5.28 63.74 10.27 24.56 73.70 39.00
Params/M 44.59 22.75 20.60 13.93 3.30 41.85
Runtime/s 0.010 0.035 0.027 0.037 0.042 0.030
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Tab. 3 Ablation experiments on the oracle dataset

Variants Base V1 V2 V3
Perceptual Loss w/o N N w/o
R2U-Net w/o w/o v v
PSNR 4 16.66 17.02 21.40 20.82
SSIM 4 0.829 153  0.838 868  0.924 612  0.891 416
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Fig.4 Visualization results of the generalization experiments
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R2PixGAN:an efficient new method for denoising oracle bone topographies

Wang Shibin*", Wang Yu‘, Yu Qi‘, Liu Dong", Yan Juan®

(a. School of Computer and Information Engineering; b. Henan Provincial Key Laboratory of Artificial Intelligence and Personalized

Learning in Education Henan; c. Oracle Intelligent Computing Laboratory, Henan Normal University, Xinxiang 453007, China)

Abstract: Deep learning has shown strong effects in image denoising. However, existing models often fail to handle ora-
cle bone rubbings which contain complex noise and unique character structures. To solve this, we propose R2PixGAN, a de-
noising method based on Pix2Pix. It uses an R2U-Net as the generator which keeps the benefits of U-Net and adds RNN to im-
prove image rebuilding and denoising. We also include a perceptual loss to keep key details. Tests show that R2PixGAN gets
higher PSNR and SSIM scores than other methods, proving its better performance.

Keywords: image denoising; oracle bone inscriptions; perceptual loss
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Fig.S1 Framework diagram of the R2U-Net generator
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Fig..S2 Visualization results of difTerent denoising models



