l Z. Dai, L. Cao, X. Kang, Maximal principles and with applications to symmetry for the logarithmic Schr\{o}dinger, submitted. l L. Cao, X. Kang, Z. Dai, Symmetry and monotonicity of positive solutions for Choquard equation involving logarithmic Laplacian operator, J. Fixed Point Theory Appl., (2024) 26:36, , SCI l X. Wang, L. Cao, Gradient estimates for a nonlinear elliptic equation on a smooth metric measure space, Commun. Math. , 32 (2024), 1:149–156. l L. Fan, L. Cao, P. Zhao, Symmetry and monotonicity of positive solutions for Choquard equations involving a generalized tempered fractional p-Laplacian in R^n, Fract. Calc. Appl. Anal., 26 (2023), 6: 2757–2773. SCI l L. Cao, L. Fan, Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in a ball, Complex Var. Elliptic Equ., 68 (2023), 4: 667–679. SCI l L. Cao, L. Fan, Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in Rn, Anal. Math. Phys., 12, (2022), 2: No. 42, 15 pp . SCI l L. Cao, X. Wang, Radial symmetry of positive solutions to a class of fractional Laplacian with a singular nonlinearity, J. Korean Math. Soc., 58, (2021), 6: 1449–1460 . SCI l L. Cao, X. Wang, Z. Dai, Radial Symmetry and Monotonicity of Solutions to a System Involving Fractional p-Laplacian in a Ball, Adv. Math. Phys., 2018, ID: 1565731, 6pp. SCI l Z. Dai, L. Cao, P. Wang, Liouville type theorems for the system of fractional nonlinear equations in R-+(n),J. Inequal. Appl., 2016, No. 267, 17 pp. SCI l P. Wang, Z. Dai, L. Cao, Radial symmetry and monotonicity for fractional Henon equation in R-n, Complex Var. Elliptic Equ., 2015: 60 , 1685-1695. SCI l L. Cao, Z. Dai, W. Li, Liouville-type theorem for some nonlinear systems in a half-space, J. Inequal. Appl., 2014, 173, 9pp. SCI l L. Cao, Z. Dai, Symmetry and nonexistence of positive solutions for weighted HLS system of integral equations on a half space, Abstr. Appl. Anal., 2014, ID 593210, 7pp. SCI l Y. Liu, L. Cao, Lifespan theorem and gap lemma for the globally constranit Willmore flow, Commu. Pure Appl. Anal., 2 (2014), 13: 715-728. SCI l R. Xu, L. Cao, Bernstein properties for α-complete hypersurfaces, J. Inequal. Appl., 2014, 159, 9pp. SCI l R. Xu, L. Cao, Complete self-shrinking solutions for Lagrangian mean curvature flow in pseudo-Euclidean space, Abstr. Appl. Anal., 2014, ID 196751, 9pp. SCI l L. Cao, G. Xu, Z. Dai, A new characterization of totally umbilical hypersurfaces in de Sitterspace, Adv., Pure Math., 2014, 4: 42-46. l X.Qi, L. Cao, X. Li, New hyper-Kahler structures on tangent bundles, Commu. Math., 22 (2014): 13-30. l L. Cao, W. Chen, Liouville type theorems for poly-harmonic Navier problems, Disc. Cont. Dyna. Syst., 33 (2013), 9: 3937–3955. SCI l L. Cao, Z. Dai, A Liouville-type theorem for an integral system on a half-space R^n_+, J. Ineq. Appl., 2013: 37, 9pp. SCI l L. Cao, Z. Dai, Regularity of solutions to an integral equation on a half-space R^n_+, Adv. Pure Math., 3(2013), 153-158. l L. Cao, Z. Dai, A Liouville-type theorem for an integral equation on a half-space R^n_+ , J. Math. Anal. Appl., 389 (2012), 1365-1373. SCI l G. Huang, X. Li, L. Cao, Universal bounds on eigenvalues of the buckling problem on spherical domains, J. Math., 31(2011), 5: 840-847. l F. Wu, L. Cao, Estimates for eigenvalues of Laplacian operator with any order. Sci. in China,Series A, 50(2007), 1078-1086. SCI l L. Cao, H. Li, r-minimal submanifolds in space forms, Ann. Glob. Anal. Geom., 2007, 32: 311-341. SCI l L. Cao, G. Wei, A new characterization of hyperbolic cylinder in anti-de Sitter space $H^{n+1}(-1)$, J. Math. Anal. Appl., 2007, 329: 408-414. SCI l X.,Li, L. Cao,The Uniqueness and Nonexistance Results for Some Nonlinear Partial Equations on Riemannian Manifolds,Chin.Quart. J. Math.,22, 2007, 3: 344-351. l L. Cao, H. Li, Variational Problems in Geometry of Submanifolds, Proc. 11th Inter. Works. Differ. Geom., Kyungpook National University, Korea, 2006.11, 41-71. l L. Cao, H. Li, A variational formula in terms of $r-$th mean curvature function for submanifolds in space form, Differ. Geom. Methods Appl., Northeastern University,Shenyang, 2006.9, 1-27. l X. Li, L. Cao,Some results on instability of Yang-Mills fields on submanifolds in Euclidean spaces and standard spheres, J. Math. Res. Exposition, 24 (2004), 3: 461–472. |