人才荟萃

裴永刚

发布时间: 2016-01-13     浏览次数:10057

 

 

 

 

裴永刚,男,19804月生,博士,副教授,硕士生导师。 

 E-mail:   peiyonggang@htu.edu.cnpeiyg@163.com

通信地址:数学与信息科学学院 

邮  编: 453007

  

  

  个人简历

  

1998.9-2002.6, 河南师范大学, 数学与信息科学学院, 计算数学专业, 获理学学士学位

2002.7至今,河南师范大学,从事教学科研工作

其间

2005.9-2008.6,河南师范大学,数学与信息科学学院, 计算数学专业,获理学硕士学位

2011.9-2014.6,上海师范大学,数理学院,计算数学专业,获理学博士学位

  

 研究领域

  

  研究领域:运筹学

  研究方向:最优化理论、算法及其应用

  

 教学工作

  

  主讲本科生课程:《运筹与优化》、《运筹学》、《线性代数》《高等数学》

  主讲研究生课程:《凸优化方法》、《凸分析》、《数学规划》

  

 获奖、荣誉

  

202106月,获河南省高等学校优秀共产党员

2016年被评为河南师范大学优秀教师、文明教师

2015年获河南省自然科学优秀学术论文一等奖和三等奖各1

2015年指导本科生参加全国大学生数学建模竞赛获国家二等奖1

2011年被评为河南师范大学优秀共产党员

  

 科研项目

  

1. 基于大数据优化问题的免矩阵信赖域过滤算法研究(河南省科技攻关项目),主持, 2016-2018,结题

2. 广义分式规划问题的全局优化方法研究(国家自然科学基金),2017-2020,参加

3.关于随机二阶锥互补约束数学规划问题的研究(国家自然科学基金),2019-2021,参加.

4. 广义非线性分式和问题的全局优化方法研究(国家自然科学基金),2021-2024,参加

  

 论文

  

[1]         Pei,     Yonggang; Song, Shaofang; Zhu, Detong. A filter sequential adaptive cubic     regularization algorithm for nonlinear constrained optimization. Numer.     Algorithms 93 (2023), no. 4, 1481–1507.

[2]         Pei,     Yonggang; Song, Shaofang; Zhu, Detong. A sequential adaptive regularisation     using cubics algorithm for solving nonlinear equality constrained     optimization. Comput. Optim. Appl. 84 (2023), no. 3, 1005–1033.

[3]         Song,     Yanlai; Pei, Yonggang. A new viscosity semi-implicit midpoint rule for     strict pseudo-contractions and (α,β)-generalized hybrid mappings.     Optimization 70 (2021), no. 12, 2635–2653.

[4]         Pei,     Yonggang; Chen, Xinhong Algorithms for common null point problems with an     infinite family of demimetric mappings in Banach spaces. Math. Appl.     (Wuhan) 32 (2019), no. 1, 94–105.

[5]         Pei,     Yong Gang; Zhu, De Tong On the global convergence of a projective trust region     algorithm for nonlinear equality constrained optimization. Acta Math. Sin.     (Engl. Ser.) 34 (2018), no. 12, 1804–1828.

[6]         Gu,     Chao; Zhu, Detong; Pei, Yonggang A new inexact SQP algorithm for nonlinear     systems of mixed equalities and inequalities. Numer. Algorithms 78 (2018),     no. 4, 1233–1253.

[7]         Song,     Yanlai; Pei, Yonggang A new modified semi-implicit midpoint rule for     nonexpansive mappings and 2-generalized hybrid mappings. J. Nonlinear Sci.     Appl. 9 (2016), no. 12, 6348–6363.

[8]         Yang,     Ximei; Zhang, Yinkui; Liu, Hongwei; Pei, Yonggang A Mizuno-Todd-Ye     predictor-corrector infeasible-interior-point method for linear programming     over symmetric cones. Numer. Algorithms 72 (2016), no. 4, 915–936.

[9]         Pei,     Yonggang; Zhu, Detong Local convergence of a trust-region algorithm with     line search filter technique for nonlinear constrained optimization. Appl.     Math. Comput. 273 (2016), 797–808.

[10]Pei, Yonggang;     Zhu, Detong An affine scaling interior trust-region algorithm combining     backtracking line search with filter technique for nonlinear constrained     optimization. Numer. Funct. Anal. Optim. 36 (2015), no. 8, 1046–1066.

[11]Pei, Yonggang;     Zhu, Detong A trust-region algorithm combining line search filter method     with Lagrange merit function for nonlinear constrained optimization. Appl.     Math. Comput. 247 (2014), 281–300.

[12]Pei, Yonggang;     Zhu, Detong A trust-region algorithm combining line search filter technique     for nonlinear constrained optimization. Int. J. Comput. Math. 91 (2014),     no. 8, 1817–1839.

[13]Pei, Yonggang     Modified Ishikawa iteration of Cesàro means for asymptotically     non-expansive mappings. Math. Appl. (Wuhan) 27 (2014), no. 3, 519–528.

[14]Pei, Yong Gang;     Jin, Li; Shen, Pei Ping A duality bound method for solving concave     multiplicative programming with exponents. (Chinese) Acta Math. Appl. Sin.     36 (2013), no. 1, 115–125.

[15]Pei, Yonggang;     Zhu, Detong Global optimization method for maximizing the sum of difference     of convex functions ratios over nonconvex region. J. Appl. Math. Comput. 41     (2013), no. 1-2, 153–169.

[16]Pei, Yonggang; Gu,     Minna; Shen, Peiping Global optimization for the sum of convex ratios     problem over nonconvex feasible region. Math. Appl. (Wuhan) 23 (2010), no.     3, 582–588.

[17]Shen, Pei-Ping;     Duan, Yun-Peng; Pei, Yong-Gang A simplicial branch and duality bound     algorithm for the sum of convex-convex ratios problem. J. Comput. Appl.     Math. 223 (2009), no. 1, 145–158.