| |||||
| |||||
李智,男,1990年7月生,博士,硕士生导师。2014年-2017年,在河南师范大学数学与信息科学学院攻读硕士研究生,获理学硕士学位;2017年-2020年,在华南师范大学数学科学学院攻读博士研究生,获理学博士学位,研究方向为微分几何; 2021年1月,博士毕业到河南师范大学任教至今。 | |||||
| |||||
微分几何,子流形几何 | |||||
| |||||
主讲本科生课程:《解析几何》﹑《高等数学》。 | |||||
| |||||
1.2023年“田家炳杯”全日制教育硕士专业学位研究生学科教学(数学)专业教学技能大赛优秀指导老师; 2.2023年度“优秀工会积极分子”。 | |||||
| |||||
1.国家自然科学基金-青年基金(12401060),2025.1-2027.12, 主持。 2.河南省自然科学基金-青年基金(242300421686), 2024.1-2025.12, 主持。 3.中国博士后科学基金面上项目(2022M711074), 2022.6-2024.5,主持。 | |||||
|
[1] Huang Guangyue and Li Zhi, Liouville type theorems of a nonlinear elliptic equation for the V-Laplacian, Analysis And Mathematical Physics, 8 (2018), no. 1, 123-134. (SCI)
[2]Huang Guangyue and Li Zhi, Monotonicity formulas of eigenvalues and energy functionals along the rescaled List's extended Ricci flow, Mediterranean Journal of Mathematics, 15 (2018), no. 2, Paper No. 63, 20 pp.(SCI)
[3] Li Zhi and Huang, Guangyue, Upper bounds on the first eigenvalue for the p-Laplacian, Mediterranean Journal of Mathematics, 17 (2020), no. 4, Paper No. 112, 18 pp.(SCI)
[4]Cheng Qing-Ming, Li Zhi and Wei, Guoxin Complete self-shrinkers with constant norm of the second fundamental form,Mathematische Zeitschrift, 300 (2022), no. 1, 995-1018.(SCI)
[5]Li Zhi and Wei Guoxin, Complete 3-dimensional λ-translators in the Minkowski space R^{4}_{1}, Journal of the Mathematical Society of Japan, 75 (2023), no. 1, 119-150.(SCI)
[6]Li Zhi and Wei Guoxi, An immersed S^{n}λ-hypersurface, Journal of Geometric Analysis, 33 (2023), no. 9, Paper No. 288, 29 pp. (SCI)
[7]Li Zhi and Wei Guoxi, Complete lagrangian self-expanders in C^{2}, Journal of Geometry and Physics, 198 (2024), Paper No. 105107.
[8]Cheng Qing-Ming, Li Zhi and Wei Guoxin, Classification of complete 3-dimensional self-shrinkers in Euclidean space R^{4}, Science China Mathematics, 67 (2024), no. 4, 873-882.(通信作者)(SCI)
[9]Li Zhi, Wei Guoxin and Chen Gangyi, Complete 3-dimensional λ-translators in the Euclidean space R^{4}, Journal of Topology and Analysis, 16 (2024), no. 1, 71-124.(SCI)
[10]Li Zhi, Complete λ-hypersurfaces with constant squared norm of the second fundamental form in the Euclidean space R^{4}, Colloquium Mathematicum, 175 (2024), no. 2, 187-210.(SCI)
[11]Li Zhi and Wei Guoxi, A rigidity theorem for self-expanders, Manuscripta Mathematica, 175 (2024), no. 1-2, 487-498. (SCI)
[12]Li Zhi and Mi Yuan,Complete Self-expanders in the Euclidean Space R^{4}, Results in Mathematics, 80 (2025), no. 1, Paper No. 25. (SCI)
[13]Li Zhi, Wang Ruixin and Wei Guoxin, The Rigidity Theorem for Complete Lagrangian Self-Shrinkers, Journal of Geometric Analysis, 35 (2025), no. 2, Paper No. 69. (SCI)