邢 丞

发布时间:2025-03-27浏览次数:10

 

 邢丞-一寸电子照片

  

 

      邢丞,讲师
      
电子邮件: xingcheng@htu.edu.cn
      
通信地址: 数学与统计学院
      
邮  编: 453007

 

  

  

 

个人简历

  

教育经历:

20122016郑州大学,数学与统计学院,本科

20162018郑州大学,数学与统计学院,硕士

20182022郑州大学,数学与统计学院,博士

20222024,南开大学,数学科学学院,博士后

工作经历:

2024.11—至今,河南师范大学,数学与统计学院,讲师

 

研究领域

  

微分几何

 

教学工作

  

 

 

学术兼职

  

美国《数学评论》评论员

德国《数学文摘》评论员

 

 

科研项目

 

  

1.中国博士后科学基金-面上项目(2023M731810)2023-2024,主持

2.国家自然科学基金-面上项目(12171437)2022-2025,参与

3.国家自然科学基金-面上项目(11771404)2018-2021,参与

 

论文著作

  

[1] Hu, Zejun; Xing, Cheng*: On the Ricci curvature of 3-submanifolds in the unit sphere. Arch. Math. (Basel) 115 (2020), no. 6, 727-735. (SCI)

[2] Hu, Zejun; Xing, Cheng*: New equiaffine characterizations of the ellipsoids related to an equiaffine integral inequality on hyperovaloids. Math. Inequal. Appl. 24 (2021), no. 2, 337-350. (SCI)

[3] Hu, Zejun; Xing, Cheng*: A new centroaffine characterization of the ellipsoids. Proc. Amer. Math. Soc. 149 (2021), no. 8, 3531-3540. (SCI)

[4] Hu, Zejun; Xing, Cheng*: New characterizations of the Whitney spheres and the contact Whitney spheres. Mediterr. J. Math. 19 (2022), no. 2, Paper No. 75, 14 pp. (SCI)

[5] Hu, Zejun; Li, Cece; Xing, Cheng*: On Lorentzian Einstein affine hyperspheres. J. Geom. Phys. 179 (2022), Paper No. 104587, 13 pp. (SCI)

[6] Cheng, Xiuxiu; Hu, Zejun; Xing, Cheng*: On centroaffine Tchebychev hypersurfaces with constant sectional curvature. Results Math. 77 (2022), no. 4, Paper No. 175, 29 pp. (SCI)

[7] Hu, Zejun; Li, Meng; Xing, Cheng*: On C-totally real minimal submanifolds of the Sasakian space forms with parallel Ricci tensor. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), no. 4, Paper No. 163, 25 pp. (SCI)

[8] Li, Cece*; Xing, Cheng; Xu, Huiyang: Locally strongly convex affine hypersurfaces with semi-parallel cubic form. J. Geom. Anal. 33 (2023), no. 3, Paper No. 81, 33 pp. (SCI)

[9] Xu, Huiyang; Li, Cece; Xing, Cheng*: On conformally flat centroaffine hypersurfaces with semi-parallel cubic form. J. Math. Anal. Appl. 523 (2023), no. 2, Paper No. 127095, 15 pp. (SCI)

[10] Xing, Cheng; Zhai, Shujie*: Minimal Legendrian submanifolds in Sasakian space forms with C-parallel second fundamental form. J. Geom. Phys. 187 (2023), Paper No. 104790, 15 pp. (SCI)

[11] Hu, Zejun; Xing, Cheng*: Locally conformally flat affine hyperspheres with parallel Ricci tensor. J. Math. Anal. Appl. 528 (2023), no. 1, Paper No. 127596, 11 pp. (SCI)

[12] Zhai, Shujie; Xing, Cheng*: Classification of semi-parallel hypersurfaces of the product of two spheres. Differential Geom. Appl. 91 (2023), Paper No. 102067, 13 pp.

[13] Gao, Mingzhu; Hu, Zejun; Xing, Cheng*: A rigidity theorem for hypersurfaces of the odd-dimensional unit sphere . Colloq. Math. 174 (2023), no. 2, 151-160. (SCI)

[14] Li, Dehe; Xing, Cheng*; Zhang, Lifen: Cyclic semi-parallel real hypersurfaces in complex Grassmannians of rank two. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 118 (2024), no. 1, Paper No. 8, 14 pp. (SCI)

[15] Xing, Cheng; Yin, Jiabin*: Some optimal inequalities for anti-invariant submanifolds of the unit sphere. J. Geom. Anal. 34 (2024), no. 2, Paper No. 38, 24 pp. (SCI)

[16] Li, Cece*; Xing, Cheng; Xu, Huiyang: On affine hypersurfaces with parallel cubic form relative to affine α-connection. Acta Math. Sin. (Engl. Ser.) 40 (2024), no. 4, 1099-1114. (SCI)

[17] Duan, Weilin; Hu, Zejun; Xing, Cheng*: On conformally flat manifolds with semi-parallel Ricci tensor and applications to the study of affine hyperspheres. Results Math. 79 (2024), no. 5, Paper No. 205, 17 pp. (SCI)

[18] Li, Cece; Xing, Cheng*: On minimal Lagrangian submanifolds in complex space forms with semi-parallel second fundamental form. Internat. J. Math. 35 (2024), no. 14, Paper No. 2450056, 24 pp. (SCI)

[19] Li, Cece; Xing, Cheng*; Yin Jiabin: On conformally flat minimal Legendrian submanifolds in the unit sphere, Proc. Roy. Soc. Edinburgh Sect. A (2024), 30 pp, DOI:10.1017/prm.2024.57 (SCI)

[20] Xu, Huiyang; Li, Cece; Xing, Cheng*: Lagrangian H-umbilical submanifolds in complex space forms and pseudo-parallel cubic form. J. Geom. Phys. 209 (2025), Paper No. 105401, 12 pp. (SCI)